Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Total variation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Proof of the equality===== Under the conditions of the theorem, from the lemma we have: :<math> \int_\Omega f\operatorname{div} \mathbf\varphi = - \int_\Omega \mathbf\varphi\cdot\nabla f \leq \left| \int_\Omega \mathbf\varphi\cdot\nabla f \right| \leq \int_\Omega \left|\mathbf\varphi\right|\cdot\left|\nabla f\right| \leq \int_\Omega \left|\nabla f\right| </math> in the last part <math>\mathbf\varphi</math> could be omitted, because by definition its essential supremum is at most one. On the other hand, we consider <math>\theta_N:=-\mathbb I_{\left[-N,N\right]}\mathbb I_{\{\nabla f\ne 0\}}\frac{\nabla f}{\left|\nabla f\right|}</math> and <math>\theta^*_N</math> which is the up to <math>\varepsilon</math> approximation of <math>\theta_N</math> in <math> C^1_c</math> with the same integral. We can do this since <math> C^1_c</math> is dense in <math> L^1 </math>. Now again substituting into the lemma: :<math>\begin{align} &\lim_{N\to\infty}\int_\Omega f\operatorname{div}\theta^*_N \\[4pt] &= \lim_{N\to\infty}\int_{\{\nabla f\ne 0\}}\mathbb I_{\left[-N,N\right]}\nabla f\cdot\frac{\nabla f}{\left|\nabla f\right|} \\[4pt] &= \lim_{N\to\infty}\int_{\left[-N,N\right]\cap{\{\nabla f\ne 0\}}} \nabla f\cdot\frac{\nabla f}{\left|\nabla f\right|} \\[4pt] &= \int_\Omega\left|\nabla f\right| \end{align}</math> This means we have a convergent sequence of <math display="inline">\int_\Omega f \operatorname{div} \mathbf\varphi</math> that tends to <math display="inline">\int_\Omega\left|\nabla f\right|</math> as well as we know that <math display="inline">\int_\Omega f\operatorname{div}\mathbf\varphi \leq \int_\Omega\left|\nabla f\right| </math>. [[Q.E.D.]] It can be seen from the proof that the supremum is attained when : <math>\varphi\to \frac{-\nabla f}{\left|\nabla f\right|}.</math> The [[Function (mathematics)|function]] <math>f</math> is said to be of [[bounded variation]] precisely if its total variation is finite.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)