Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trigonometric functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Basic identities== Many [[identity (mathematics)|identities]] interrelate the trigonometric functions. This section contains the most basic ones; for more identities, see [[List of trigonometric identities]]. These identities may be proved geometrically from the unit-circle definitions or the right-angled-triangle definitions (although, for the latter definitions, care must be taken for angles that are not in the interval {{math|[0, {{pi}}/2]}}, see [[Proofs of trigonometric identities]]). For non-geometrical proofs using only tools of [[calculus]], one may use directly the differential equations, in a way that is similar to that of the [[#Euler's formula and the exponential function|above proof]] of Euler's identity. One can also use Euler's identity for expressing all trigonometric functions in terms of complex exponentials and using properties of the exponential function. ===Parity=== The cosine and the secant are [[even function]]s; the other trigonometric functions are [[odd function]]s. That is: :<math>\begin{align} \sin(-x) &=-\sin x\\ \cos(-x) &=\cos x\\ \tan(-x) &=-\tan x\\ \cot(-x) &=-\cot x\\ \csc(-x) &=-\csc x\\ \sec(-x) &=\sec x. \end{align}</math> ===Periods=== All trigonometric functions are [[periodic function]]s of period {{math|2{{pi}}}}. This is the smallest period, except for the tangent and the cotangent, which have {{pi}} as smallest period. This means that, for every integer {{mvar|k}}, one has :<math>\begin{array}{lrl} \sin(x+&2k\pi) &=\sin x \\ \cos(x+&2k\pi) &=\cos x \\ \tan(x+&k\pi) &=\tan x \\ \cot(x+&k\pi) &=\cot x \\ \csc(x+&2k\pi) &=\csc x \\ \sec(x+&2k\pi) &=\sec x. \end{array}</math> See [[#Periodicity_and_asymptotes|Periodicity and asymptotes]]. ===Pythagorean identity=== The Pythagorean identity, is the expression of the [[Pythagorean theorem]] in terms of trigonometric functions. It is :<math>\sin^2 x + \cos^2 x = 1</math>. Dividing through by either <math>\cos^2 x</math> or <math>\sin^2 x</math> gives :<math>\tan^2 x + 1 = \sec^2 x</math> :<math>1 + \cot^2 x = \csc^2 x</math> and :<math>\sec^2 x + \csc^2 x = \sec^2 x \csc^2 x</math>. ===Sum and difference formulas=== The sum and difference formulas allow expanding the sine, the cosine, and the tangent of a sum or a difference of two angles in terms of sines and cosines and tangents of the angles themselves. These can be derived geometrically, using arguments that date to [[Ptolemy]] (see [[List_of_trigonometric_identities#Angle_sum_and_difference_identities|Angle sum and difference identities]]). One can also produce them algebraically using [[Euler's formula]]. ; Sum :<math>\begin{align} \sin\left(x+y\right)&=\sin x \cos y + \cos x \sin y,\\[5mu] \cos\left(x+y\right)&=\cos x \cos y - \sin x \sin y,\\[5mu] \tan(x + y) &= \frac{\tan x + \tan y}{1 - \tan x\tan y}. \end{align}</math> ; Difference :<math>\begin{align} \sin\left(x-y\right)&=\sin x \cos y - \cos x \sin y,\\[5mu] \cos\left(x-y\right)&=\cos x \cos y + \sin x \sin y,\\[5mu] \tan(x - y) &= \frac{\tan x - \tan y}{1 + \tan x\tan y}. \end{align}</math> When the two angles are equal, the sum formulas reduce to simpler equations known as the [[double-angle formulae]]. :<math>\begin{align} \sin 2x &= 2 \sin x \cos x = \frac{2\tan x}{1+\tan^2 x}, \\[5mu] \cos 2x &= \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x = \frac{1-\tan^2 x}{1+\tan^2 x},\\[5mu] \tan 2x &= \frac{2\tan x}{1-\tan^2 x}. \end{align}</math> These identities can be used to derive the [[product-to-sum identities]]. By setting <math>t=\tan \tfrac12 \theta,</math> all trigonometric functions of <math>\theta</math> can be expressed as [[rational fraction]]s of <math>t</math>: :<math>\begin{align} \sin \theta &= \frac{2t}{1+t^2}, \\[5mu] \cos \theta &= \frac{1-t^2}{1+t^2},\\[5mu] \tan \theta &= \frac{2t}{1-t^2}. \end{align}</math> Together with :<math>d\theta = \frac{2}{1+t^2} \, dt,</math> this is the [[tangent half-angle substitution]], which reduces the computation of [[integral]]s and [[antiderivative]]s of trigonometric functions to that of rational fractions. ===Derivatives and antiderivatives=== The [[derivative]]s of trigonometric functions result from those of sine and cosine by applying the [[quotient rule]]. The values given for the [[antiderivative]]s in the following table can be verified by differentiating them. The number {{mvar|C}} is a [[constant of integration]]. {| class="wikitable" style="text-align: center;" !<math>f(x)</math> !! <math>f'(x)</math> !! <math display="inline">\int f(x) \, dx</math> |- |<math>\sin x</math>||<math>\cos x</math>||<math>-\cos x + C</math> |- |<math>\cos x</math>||<math>-\sin x</math>||<math>\sin x + C</math> |- |<math>\tan x</math>||<math>\sec^2 x</math>||<math>\ln \left| \sec x \right| + C</math> |- |<math>\csc x</math>||<math>-\csc x \cot x</math>||<math>\ln \left| \csc x - \cot x \right| + C</math> |- |<math>\sec x</math>||<math>\sec x \tan x</math>||<math>\ln \left| \sec x + \tan x \right| + C</math> |- |<math>\cot x</math>||<math>-\csc^2 x</math>||<math>-\ln \left| \csc x \right| + C</math> |} Note: For <math>0<x<\pi</math> the integral of <math>\csc x</math> can also be written as <math>-\operatorname{arsinh}(\cot x),</math> and for the integral of <math>\sec x</math> for <math>-\pi/2<x<\pi/2</math> as <math>\operatorname{arsinh}(\tan x),</math> where <math>\operatorname{arsinh}</math> is the [[inverse hyperbolic sine]]. Alternatively, the derivatives of the 'co-functions' can be obtained using trigonometric identities and the chain rule: :<math> \begin{align} \frac{d\cos x}{dx} &= \frac{d}{dx}\sin(\pi/2-x)=-\cos(\pi/2-x)=-\sin x \, , \\ \frac{d\csc x}{dx} &= \frac{d}{dx}\sec(\pi/2 - x) = -\sec(\pi/2 - x)\tan(\pi/2 - x) = -\csc x \cot x \, , \\ \frac{d\cot x}{dx} &= \frac{d}{dx}\tan(\pi/2 - x) = -\sec^2(\pi/2 - x) = -\csc^2 x \, . \end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)