Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
3D rotation group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Spherical harmonics == {{Main|Spherical harmonics}} {{See also|Representation of a Lie group#An example: The rotation group SO.283.29{{!}}Representations of SO(3)}} The group {{math|SO(3)}} of three-dimensional Euclidean rotations has an infinite-dimensional representation on the Hilbert space :<math>L^2\left(\mathbf{S}^2\right) = \operatorname{span} \left\{ Y^\ell_m, \ell \in \N^+, -\ell \leq m \leq \ell \right\}, </math> where <math>Y^\ell_m</math> are [[spherical harmonics]]. Its elements are square integrable complex-valued functions<ref group=nb>The elements of {{math|''L''<sup>2</sup>('''S'''<sup>2</sup>)}} are actually equivalence classes of functions. two functions are declared equivalent if they differ merely on a set of [[measure zero]]. The integral is the Lebesgue integral in order to obtain a ''complete'' inner product space.</ref> on the sphere. The inner product on this space is given by {{NumBlk|:|<math>\langle f,g\rangle = \int_{\mathbf{S}^2}\overline{f}g\,d\Omega = \int_0^{2\pi} \int_0^\pi \overline{f}g \sin\theta \, d\theta \, d\phi.</math>|{{EquationRef|H1|H1}}}} If {{mvar|f}} is an arbitrary square integrable function defined on the unit sphere {{math|'''S'''<sup>2</sup>}}, then it can be expressed as<ref name="Gelfand_M_S">{{harvnb|Gelfand|Minlos|Shapiro|1963}}</ref> {{NumBlk|:|<math>|f\rangle = \sum_{\ell = 1}^\infty\sum_{m = -\ell}^{m = \ell} \left|Y_m^\ell\right\rangle\left\langle Y_m^\ell|f\right\rangle, \qquad f(\theta, \phi) = \sum_{\ell = 1}^\infty\sum_{m = -\ell}^{m = \ell} f_{\ell m} Y^\ell_m(\theta, \phi),</math>|{{EquationRef|H2|H2}}}} where the expansion coefficients are given by {{NumBlk|:|<math>f_{\ell m} = \left\langle Y_m^\ell, f \right\rangle = \int_{\mathbf{S}^2}\overline{{Y^\ell_m}}f \, d\Omega = \int_0^{2\pi} \int_0^\pi \overline{{Y_m^\ell}}(\theta, \phi)f(\theta, \phi)\sin \theta \, d\theta \, d\phi.</math>|{{EquationRef|H3|H3}}}} The Lorentz group action restricts to that of {{math|SO(3)}} and is expressed as {{NumBlk|:|<math>(\Pi(R)f)(\theta(x), \phi(x)) = \sum_{\ell = 1}^\infty\sum_{m = -\ell}^{m = \ell}\sum_{m' = -\ell}^{m' = \ell} D^{(\ell)}_{mm'} (R) f_{\ell m'}Y^\ell_m \left(\theta\left(R^{-1}x\right), \phi\left(R^{-1}x\right)\right), \qquad R \in \operatorname{SO}(3), \quad x \in \mathbf{S}^2.</math>|{{EquationRef|H4|H4}}}} This action is unitary, meaning that {{NumBlk|:|<math>\langle \Pi(R)f,\Pi(R)g\rangle = \langle f,g \rangle \qquad \forall f,g \in \mathbf{S}^2, \quad \forall R \in \operatorname{SO}(3).</math>|{{EquationRef|H5|H5}}}} The {{math|''D''<sup>(''ℓ'')</sup>}} can be obtained from the {{math|''D''<sup>(''m'', ''n'')</sup>}} of above using [[Clebsch–Gordan coefficients|Clebsch–Gordan decomposition]], but they are more easily directly expressed as an exponential of an odd-dimensional {{math|'''su'''(2)}}-representation (the 3-dimensional one is exactly {{math|𝖘𝖔(3)}}).<ref>In ''Quantum Mechanics – non-relativistic theory'' by [[Course of Theoretical Physics|Landau and Lifshitz]] the lowest order {{math|''D''}} are calculated analytically.</ref><ref>{{harvnb|Curtright|Fairlie|Zachos|2014}} A formula for {{math|''D''<sup>(''ℓ'')</sup>}} valid for all ''ℓ'' is given.</ref> In this case the space {{math|''L''<sup>2</sup>('''S'''<sup>2</sup>)}} decomposes neatly into an infinite direct sum of irreducible odd finite-dimensional representations {{math|1=''V''<sub>2''i'' + 1</sub>, ''i'' = 0, 1, ...}} according to<ref>{{harvnb|Hall|2003}} Section 4.3.5.</ref> {{NumBlk|:|<math>L^2\left(\mathbf{S}^2\right) = \sum_{i = 0}^\infty V_{2i + 1} \equiv \bigoplus_{i=0}^\infty \operatorname{span}\left\{Y_m^{2i+1}\right\}.</math>|{{EquationRef|H6|H6}}}} This is characteristic of infinite-dimensional unitary representations of {{math|SO(3)}}. If {{mvar|Π}} is an infinite-dimensional unitary representation on a [[separable space|separable]]<ref group=nb>A Hilbert space is separable if and only if it has a countable basis. All separable Hilbert spaces are isomorphic.</ref> Hilbert space, then it decomposes as a direct sum of finite-dimensional unitary representations.<ref name=Gelfand_M_S/> Such a representation is thus never irreducible. All irreducible finite-dimensional representations {{math|(Π, ''V'')}} can be made unitary by an appropriate choice of inner product,<ref name=Gelfand_M_S/> :<math>\langle f, g\rangle_U \equiv \int_{\operatorname{SO}(3)} \langle\Pi(R)f, \Pi(R)g\rangle \, dg = \frac{1}{8\pi^2} \int_0^{2\pi} \int_0^\pi \int_0^{2\pi} \langle \Pi(R)f, \Pi(R)g\rangle \sin \theta \, d\phi \, d\theta \, d\psi, \quad f,g \in V,</math> where the integral is the unique invariant integral over {{math|SO(3)}} normalized to {{math|1}}, here expressed using the [[Euler angles]] parametrization. The inner product inside the integral is any inner product on {{math|''V''}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)