Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Connection with Worpitzky numbers === The definition to proceed with was developed by Julius Worpitzky in 1883. Besides elementary arithmetic only the factorial function {{math|''n''!}} and the power function {{math|''k<sup>m</sup>''}} is employed. The signless Worpitzky numbers are defined as : <math> W_{n,k}=\sum_{v=0}^k (-1)^{v+k} (v+1)^n \frac{k!}{v!(k-v)!} . </math> They can also be expressed through the [[Stirling numbers of the second kind]] : <math> W_{n,k}=k! \left\{ {n+1\atop k+1} \right\}.</math> A Bernoulli number is then introduced as an inclusion–exclusion sum of Worpitzky numbers weighted by the [[Harmonic progression (mathematics)|harmonic sequence]] 1, {{sfrac|1|2}}, {{sfrac|1|3}}, ... : <math> B_{n}=\sum_{k=0}^n (-1)^k \frac{W_{n,k}}{k+1}\ =\ \sum_{k=0}^n \frac{1}{k+1} \sum_{v=0}^k (-1)^v (v+1)^n {k \choose v}\ . </math> :{{math|1=''B''<sub>0</sub> = 1}} :{{math|1=''B''<sub>1</sub> = 1 − {{sfrac|1|2}}}} :{{math|1=''B''<sub>2</sub> = 1 − {{sfrac|3|2}} + {{sfrac|2|3}}}} :{{math|1=''B''<sub>3</sub> = 1 − {{sfrac|7|2}} + {{sfrac|12|3}} − {{sfrac|6|4}}}} :{{math|1=''B''<sub>4</sub> = 1 − {{sfrac|15|2}} + {{sfrac|50|3}} − {{sfrac|60|4}} + {{sfrac|24|5}}}} :{{math|1=''B''<sub>5</sub> = 1 − {{sfrac|31|2}} + {{sfrac|180|3}} − {{sfrac|390|4}} + {{sfrac|360|5}} − {{sfrac|120|6}}}} :{{math|1=''B''<sub>6</sub> = 1 − {{sfrac|63|2}} + {{sfrac|602|3}} − {{sfrac|2100|4}} + {{sfrac|3360|5}} − {{sfrac|2520|6}} + {{sfrac|720|7}}}} This representation has {{math|''B''{{su|p=+|b=1}} {{=}} +{{sfrac|1|2}}}}. Consider the sequence {{math|''s<sub>n</sub>''}}, {{math|''n'' ≥ 0}}. From Worpitzky's numbers {{OEIS2C|id=A028246}}, {{OEIS2C|id=A163626}} applied to {{math|''s''<sub>0</sub>, ''s''<sub>0</sub>, ''s''<sub>1</sub>, ''s''<sub>0</sub>, ''s''<sub>1</sub>, ''s''<sub>2</sub>, ''s''<sub>0</sub>, ''s''<sub>1</sub>, ''s''<sub>2</sub>, ''s''<sub>3</sub>, ...}} is identical to the Akiyama–Tanigawa transform applied to {{math|''s<sub>n</sub>''}} (see [[#Connection with Stirling numbers of the first kind|Connection with Stirling numbers of the first kind]]). This can be seen via the table: :{| style="text-align:center" |+ '''Identity of<br/>Worpitzky's representation and Akiyama–Tanigawa transform''' |- |1|| || || || || ||0||1|| || || || ||0||0||1|| || || ||0||0||0||1|| || ||0||0||0||0||1|| |- |1||−1|| || || || ||0||2||−2|| || || ||0||0||3||−3|| || ||0||0||0||4||−4|| || || || || || || |- |1||−3||2|| || || ||0||4||−10||6|| || ||0||0||9||−21||12|| || || || || || || || || || || || || |- |1||−7||12||−6|| || ||0||8||−38||54||−24|| || || || || || || || || || || || || || || || || || || |- |1||−15||50||−60||24|| || || || || || || || || || || || || || || || || || || || || || || || || |- |} The first row represents {{math|''s''<sub>0</sub>, ''s''<sub>1</sub>, ''s''<sub>2</sub>, ''s''<sub>3</sub>, ''s''<sub>4</sub>}}. Hence for the second fractional Euler numbers {{OEIS2C|id=A198631}} ({{math|''n''}}) / {{OEIS2C|id=A006519}} ({{math|''n'' + 1}}): :{{math|1= ''E''<sub>0</sub> = 1}} :{{math|1= ''E''<sub>1</sub> = 1 − {{sfrac|1|2}}}} :{{math|1= ''E''<sub>2</sub> = 1 − {{sfrac|3|2}} + {{sfrac|2|4}}}} :{{math|1= ''E''<sub>3</sub> = 1 − {{sfrac|7|2}} + {{sfrac|12|4}} − {{sfrac|6|8}}}} :{{math|1= ''E''<sub>4</sub> = 1 − {{sfrac|15|2}} + {{sfrac|50|4}} − {{sfrac|60|8}} + {{sfrac|24|16}}}} :{{math|1= ''E''<sub>5</sub> = 1 − {{sfrac|31|2}} + {{sfrac|180|4}} − {{sfrac|390|8}} + {{sfrac|360|16}} − {{sfrac|120|32}}}} :{{math|1= ''E''<sub>6</sub> = 1 − {{sfrac|63|2}} + {{sfrac|602|4}} − {{sfrac|2100|8}} + {{sfrac|3360|16}} − {{sfrac|2520|32}} + {{sfrac|720|64}}}} A second formula representing the Bernoulli numbers by the Worpitzky numbers is for {{math|''n'' ≥ 1}} : <math> B_n=\frac n {2^{n+1}-2}\sum_{k=0}^{n-1} (-2)^{-k}\, W_{n-1,k} . </math> The simplified second Worpitzky's representation of the second Bernoulli numbers is: {{OEIS2C|id=A164555}} ({{math|''n'' + 1}}) / {{OEIS2C|id=A027642}}({{math|''n'' + 1}}) = {{math|{{sfrac|''n'' + 1|2<sup>''n'' + 2</sup> − 2}}}} × {{OEIS2C|id=A198631}}({{math|''n''}}) / {{OEIS2C|id=A006519}}({{math|''n'' + 1}}) which links the second Bernoulli numbers to the second fractional Euler numbers. The beginning is: :{{math|{{sfrac|1|2}}, {{sfrac|1|6}}, 0, −{{sfrac|1|30}}, 0, {{sfrac|1|42}}, ... {{=}} ({{sfrac|1|2}}, {{sfrac|1|3}}, {{sfrac|3|14}}, {{sfrac|2|15}}, {{sfrac|5|62}}, {{sfrac|1|21}}, ...) × (1, {{sfrac|1|2}}, 0, −{{sfrac|1|4}}, 0, {{sfrac|1|2}}, ...)}} The numerators of the first parentheses are {{OEIS2C|id=A111701}} (see [[#Connection with Stirling numbers of the first kind|Connection with Stirling numbers of the first kind]]).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)