Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bessel function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Transcendence === In 1929, [[Carl Ludwig Siegel]] proved that {{math|''J''<sub>''ν''</sub>(''x'')}}, {{math|''J''{{'}}<sub>''ν''</sub>(''x'')}}, and the [[logarithmic derivative]] {{math|{{sfrac|''J''{{'}}<sub>''ν''</sub>(''x'')|''J''<sub>''ν''</sub>(''x'')}}}} are [[transcendental number]]s when ''ν'' is rational and ''x'' is algebraic and nonzero.<ref>{{cite book |last1=Siegel |first1=Carl L. |title=On Some Applications of Diophantine Approximations: a translation of Carl Ludwig Siegel's Über einige Anwendungen diophantischer Approximationen by Clemens Fuchs, with a commentary and the article Integral points on curves: Siegel's theorem after Siegel's proof by Clemens Fuchs and Umberto Zannier |date=2014 |publisher=Scuola Normale Superiore |isbn=978-88-7642-520-2 |pages=81–138 |chapter-url=https://link.springer.com/chapter/10.1007/978-88-7642-520-2_2 |language=de |chapter=Über einige Anwendungen diophantischer Approximationen |doi=10.1007/978-88-7642-520-2_2}}</ref> The same proof also implies that <math> \Gamma(v+1)(2/x)^v J_{v}(x) </math> is transcendental under the same assumptions.<ref name="euclid">{{cite journal |last1=James |first1=R. D. |title=Review: Carl Ludwig Siegel, Transcendental numbers |journal=Bulletin of the American Mathematical Society |date=November 1950 |volume=56 |issue=6 |pages=523–526 |doi=10.1090/S0002-9904-1950-09435-X |url=https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-56/issue-6/Review-Carl-Ludwig-Siegel-Transcendental-numbers/bams/1183515049.full|doi-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)