Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Binary relation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Contact === Suppose <math>B</math> is the [[power set]] of <math>A</math>, the set of all [[subset]]s of <math>A</math>. Then a relation <math>g</math> is a '''contact relation''' if it satisfies three properties: # <math>\text{for all } x \in A, Y = \{ x \} \text{ implies } xgY.</math> # <math>Y \subseteq Z \text{ and } xgY \text{ implies } xgZ.</math> # <math>\text{for all } y \in Y, ygZ \text{ and } xgY \text{ implies } xgZ.</math> The [[set membership]] relation, <math>\epsilon = </math> "is an element of", satisfies these properties so <math>\epsilon</math> is a contact relation. The notion of a general contact relation was introduced by [[Georg Aumann]] in 1970.<ref>{{cite journal | url=https://www.zobodat.at/publikation_volumes.php?id=56359 | author=Georg Aumann | title=Kontakt-Relationen | journal=Sitzungsberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften München | volume=1970 | number=II | pages=67–77 | year=1971 }}</ref><ref>Anne K. Steiner (1970) [https://mathscinet.ams.org/mathscinet-getitem?mr=0309040 Review:''Kontakt-Relationen''] from [[Mathematical Reviews]]</ref> In terms of the calculus of relations, sufficient conditions for a contact relation include <math display="block">C^\textsf{T} \bar{C} \subseteq \ni \bar{C} \equiv C \overline{\ni \bar{C}} \subseteq C,</math> where <math>\ni</math> is the converse of set membership (<math>\in</math>).<ref name=GS11/>{{rp|280}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)