Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Central limit theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Calculating the variance=== Let {{mvar|S<sub>n</sub>}} be the sum of {{mvar|n}} random variables. Many central limit theorems provide conditions such that {{math|{{mvar|S<sub>n</sub>}}/{{sqrt|Var({{mvar|S<sub>n</sub>}})}}}} converges in distribution to {{math|''N''(0,1)}} (the normal distribution with mean 0, variance 1) as {{math|{{mvar|n}} β β}}. In some cases, it is possible to find a constant {{math|''Ο''<sup>2</sup>}} and function {{mvar|f(n)}} such that {{math|{{mvar|S<sub>n</sub>}}/(Ο{{sqrt|{{mvar|nβ f}}({{mvar|n}})}})}} converges in distribution to {{math|''N''(0,1)}} as {{math|{{mvar|n}}β β}}. {{math theorem | name = Lemma<ref>{{cite journal|last1=Hew|first1=Patrick Chisan|title=Asymptotic distribution of rewards accumulated by alternating renewal processes|journal=Statistics and Probability Letters|date=2017|volume=129 |pages=355β359 |doi=10.1016/j.spl.2017.06.027}}</ref> | math_statement = Suppose <math>X_1, X_2, \dots</math> is a sequence of real-valued and strictly stationary random variables with <math>\operatorname E(X_i) = 0</math> for all {{nowrap|<math>i</math>,}} {{nowrap|<math>g : [0,1] \to \R</math>,}} and {{nowrap|<math>S_n = \sum_{i=1}^{n} g\left(\tfrac{i}{n}\right) X_i</math>.}} Construct <math display="block">\sigma^2 = \operatorname E(X_1^2) + 2\sum_{i=1}^\infty \operatorname E(X_1 X_{1+i})</math> # If <math>\sum_{i=1}^\infty \operatorname E(X_1 X_{1+i})</math> is absolutely convergent, <math>\left| \int_0^1 g(x)g'(x) \, dx\right| < \infty</math>, and <math>0 < \int_0^1 (g(x))^2 dx < \infty</math> then <math>\mathrm{Var}(S_n)/(n \gamma_n) \to \sigma^2</math> as <math>n \to \infty</math> where {{nowrap|<math>\gamma_n = \frac{1}{n}\sum_{i=1}^{n} \left(g\left(\tfrac{i}{n}\right)\right)^2</math>.}} # If in addition <math>\sigma > 0</math> and <math>S_n/\sqrt{\mathrm{Var}(S_n)}</math> converges in distribution to <math>\mathcal{N}(0,1)</math> as <math>n \to \infty</math> then <math>S_n/(\sigma\sqrt{n \gamma_n})</math> also converges in distribution to <math>\mathcal{N}(0,1)</math> as {{nowrap|<math>n \to \infty</math>.}} }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)