Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convection
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Stellar physics=== {{main|Convection zone|granule (solar physics)}} [[File:Structure of Stars (artist’s impression).jpg|thumb|right|300px|An illustration of the structure of the [[Sun]] and a [[red giant]] star, showing their convective zones. These are the granular zones in the outer layers of these stars.]] The convection zone of a star is the range of radii in which energy is transported outward from the [[stellar core|core region]] primarily by convection rather than [[Radiation zone|radiation]]. This occurs at radii which are sufficiently [[Opacity (optics)|opaque]] that convection is more efficient than radiation at transporting energy.<ref>{{cite book | title=Discovering the Cosmos | first=Robert C. | last=Bless | year=1996 | page=310 | isbn=9780935702675 | publisher=University Science Books | url=https://books.google.com/books?id=jC47sk3mfjcC&pg=PA310 }}</ref> Granules on the [[photosphere]] of the Sun are the visible tops of convection cells in the photosphere, caused by convection of [[plasma (physics)|plasma]] in the photosphere. The rising part of the granules is located in the center where the plasma is hotter. The outer edge of the granules is darker due to the cooler descending plasma. A typical granule has a diameter on the order of 1,000 kilometers and each lasts 8 to 20 minutes before dissipating. Below the photosphere is a layer of much larger "supergranules" up to 30,000 kilometers in diameter, with lifespans of up to 24 hours. {{clear}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)