Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Diamond anvil cell
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Techniques=== In order to load a gas as a sample or pressure transmitting medium, the gas must be in a dense state, as to not shrink the sample chamber once pressure is induced. To achieve a dense state, gases can be liquefied at low temperatures or compressed. Cryogenic loading is a technique that uses liquefied gas as a means of filling the sample chamber. The DAC is directly immersed into the cryogenic fluid that fills the sample chamber. However, there are disadvantages to cryogenic loading. With the low temperatures indicative of cryogenic loading, the sample is subjected to temperatures that could irreversibly change it. Also, the boiling liquid could displace the sample or trap an air bubble in the chamber. It is not possible to load gas mixtures using the cryogenic method due to the different boiling points of most gases. Gas compression technique densifies the gases at room temperature. With this method, most of the problems seen with cryogenic loading are fixed. Also, loading gas mixtures becomes a possibility. The technique uses a vessel or chamber in which the DAC is placed and is filled with gas. Gases are pressurized and pumped into the vessel with a compressor. Once the vessel is filled and the desired pressure is reached the DAC is closed with a clamp system run by motor driven screws.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)