Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Digamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Roots of the digamma function== The roots of the digamma function are the saddle points of the complex-valued gamma function. Thus they lie all on the [[real line#In real algebras|real axis]]. The only one on the [[positive real axis]] is the unique minimum of the real-valued gamma function on {{math|'''[[Real number|R]]'''<sup>+</sup>}} at {{math|''x''<sub>0</sub> {{=}} {{val|1.46163214496836234126}}...}}. All others occur single between the poles on the negative axis: :{{math|''x''<sub>1</sub> {{=}} {{val|-0.50408300826445540925}}...}} :{{math|''x''<sub>2</sub> {{=}} {{val|-1.57349847316239045877}}...}} :{{math|''x''<sub>3</sub> {{=}} {{val|-2.61072086844414465000}}...}} :{{math|''x''<sub>4</sub> {{=}} {{val|-3.63529336643690109783}}...}} :<math>\vdots</math> Already in 1881, [[Charles Hermite]] observed<ref name="Hermite">{{cite journal |first=Charles |last=Hermite |title=Sur l'intégrale Eulérienne de seconde espéce | journal=Journal für die reine und angewandte Mathematik|issue=90|date=1881|pages=332–338 |doi=10.1515/crll.1881.90.332|s2cid=118866486 }}</ref> that :<math>x_n = -n + \frac{1}{\ln n} + O\left(\frac{1}{(\ln n)^2}\right)</math> holds asymptotically. A better approximation of the location of the roots is given by :<math>x_n \approx -n + \frac{1}{\pi}\arctan\left(\frac{\pi}{\ln n}\right)\qquad n \ge 2</math> and using a further term it becomes still better :<math>x_n \approx -n + \frac{1}{\pi}\arctan\left(\frac{\pi}{\ln n + \frac{1}{8n}}\right)\qquad n \ge 1</math> which both spring off the reflection formula via :<math>0 = \psi(1-x_n) = \psi(x_n) + \frac{\pi}{\tan \pi x_n}</math> and substituting {{math|''ψ''(''x<sub>n</sub>'')}} by its not convergent asymptotic expansion. The correct second term of this expansion is {{math|{{sfrac|1|2''n''}}}}, where the given one works well to approximate roots with small {{mvar|n}}. Another improvement of Hermite's formula can be given:<ref name=MezoHoffman/> :<math> x_n=-n+\frac1{\log n}-\frac1{2n(\log n)^2}+O\left(\frac1{n^2(\log n)^2}\right). </math> Regarding the zeros, the following infinite sum identities were recently proved by István Mező and Michael Hoffman<ref name="MezoHoffman">{{cite journal |first1=István |last1=Mező | first2=Michael E. | last2=Hoffman |title=Zeros of the digamma function and its Barnes ''G''-function analogue |journal=Integral Transforms and Special Functions |volume=28 | date=2017|issue=11|pages=846–858|doi=10.1080/10652469.2017.1376193|s2cid=126115156 }}</ref><ref> {{cite arXiv | last = Mező | first = István | eprint = 1409.2971 | title = A note on the zeros and local extrema of Digamma related functions | date = 2014 | class = math.CV }} </ref> :<math>\begin{align} \sum_{n=0}^\infty\frac{1}{x_n^2}&=\gamma^2+\frac{\pi^2}{2}, \\ \sum_{n=0}^\infty\frac{1}{x_n^3}&=-4\zeta(3)-\gamma^3-\frac{\gamma\pi^2}{2}, \\ \sum_{n=0}^\infty\frac{1}{x_n^4}&=\gamma^4+\frac{\pi^4}{9} + \frac23 \gamma^2 \pi^2 + 4\gamma\zeta(3). \end{align}</math> In general, the function :<math> Z(k)=\sum_{n=0}^\infty\frac{1}{x_n^k} </math> can be determined and it is studied in detail by the cited authors. The following results<ref name=MezoHoffman/> :<math>\begin{align} \sum_{n=0}^\infty\frac{1}{x_n^2+x_n}&=-2, \\ \sum_{n=0}^\infty\frac{1}{x_n^2-x_n}&=\gamma+\frac{\pi^2}{6\gamma} \end{align}</math> also hold true.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)