Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Elliptic integral
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Generalization for the overall case === Now the modular general case<ref>{{cite web|access-date=2023-02-10|language=en|title=integration - Proving Legendres Relation for elliptic curves|url=https://math.stackexchange.com/questions/701515/proving-legendres-relation-for-elliptic-curves}}<!-- auto-translated by Module:CS1 translator --></ref><ref>{{citation|access-date=2023-02-10|author=Internet Archive|date=1991|isbn=0-387-97509-8|publisher=New York : Springer-Verlag|title=Paul Halmos celebrating 50 years of mathematics|url=https://archive.org/details/paulhalmoscelebr0000unse}}<!-- auto-translated by Module:CS1 translator --></ref> is worked out. For this purpose, the derivatives of the complete elliptic integrals are derived after the modulus <math> \varepsilon </math> and then they are combined. And then the Legendre's identity balance is determined. Because the derivative of the ''circle function'' is the negative product of the ''identical mapping function'' and the reciprocal of the circle function: : <math>\frac{\mathrm{d}}{\mathrm{d}\varepsilon}\sqrt{1 - \varepsilon^2} = -\,\frac{\varepsilon}{\sqrt{1 - \varepsilon^2}}</math> These are the derivatives of K and E shown in this article in the sections above: : <math>\frac{\mathrm{d}}{\mathrm{d}\varepsilon} K(\varepsilon) = \frac{1}{\varepsilon(1-\varepsilon^2)} \bigl[E( \varepsilon) - (1-\varepsilon^2)K(\varepsilon)\bigr]</math> : <math>\frac{\mathrm{d}}{\mathrm{d}\varepsilon} E(\varepsilon) = - \,\frac{1}{\varepsilon}\bigl[K(\varepsilon) - E (\varepsilon)\bigr]</math> In combination with the derivative of the circle function these derivatives are valid then: : <math>\frac{\mathrm{d}}{\mathrm{d}\varepsilon}K(\sqrt{1 - \varepsilon^2}) = \frac{1}{\varepsilon(1-\varepsilon^ 2)} \bigl[\varepsilon^2 K(\sqrt{1 - \varepsilon^2}) - E(\sqrt{1 - \varepsilon^2})\bigr]</math> : <math>\frac{\mathrm{d}}{\mathrm{d}\varepsilon }E(\sqrt{1 - \varepsilon ^2}) = \frac{\varepsilon }{1 - \varepsilon ^2} \bigl[K(\sqrt{1 - \varepsilon^2}) - E(\sqrt{1 - \varepsilon^2})\bigr]</math> Legendre's identity includes products of any two complete elliptic integrals. For the derivation of the function side from the equation scale of Legendre's identity, the [[Product rule]] is now applied in the following: : <math>\frac{\mathrm{d}}{\mathrm{d}\varepsilon}K(\varepsilon)E(\sqrt{1 - \varepsilon^2}) = \frac{1}{\varepsilon( 1-\varepsilon^2)} \bigl[E(\varepsilon)E(\sqrt{1 - \varepsilon^2}) - K(\varepsilon)E(\sqrt{1 - \varepsilon^2}) + \varepsilon^2 K(\varepsilon)K(\sqrt{1 - \varepsilon^2})\bigr]</math> : <math>\frac{\mathrm{d}}{\mathrm{d}\varepsilon}E(\varepsilon)K(\sqrt{1 - \varepsilon^2}) = \frac{1}{\varepsilon( 1-\varepsilon^2)} \bigl[- E(\varepsilon)E(\sqrt{1 - \varepsilon^2}) + E(\varepsilon)K(\sqrt{1 - \varepsilon^2}) - (1 - \varepsilon^2) K(\varepsilon)K(\sqrt{1 - \varepsilon^2})\bigr]</math> : <math>\frac{\mathrm{d}}{\mathrm{d}\varepsilon}K(\varepsilon)K(\sqrt{1 - \varepsilon^2}) = \frac{1}{\varepsilon( 1-\varepsilon^2)} \bigl[E(\varepsilon)K(\sqrt{1 - \varepsilon^2}) - K(\varepsilon)E(\sqrt{1 - \varepsilon^2}) - ( 1 - 2\varepsilon^2) K(\varepsilon)K(\sqrt{1 - \varepsilon^2})\bigr]</math> Of these three equations, adding the top two equations and subtracting the bottom equation gives this result: : <math>\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \bigl[K(\varepsilon)E(\sqrt{1 - \varepsilon^2}) + E(\varepsilon)K (\sqrt{1 - \varepsilon^2}) - K(\varepsilon)K(\sqrt{1 - \varepsilon^2})\bigr] = 0</math> In relation to the <math> \varepsilon </math> the equation balance constantly gives the value zero. The previously determined result shall be combined with the Legendre equation to the modulus <math>\varepsilon = 1/\sqrt{2}</math> that is worked out in the section before: : <math>2E\bigl(\frac{1}{2}\sqrt{2}\bigr)K\bigl(\frac{1}{2}\sqrt{2}\bigr) - K\bigl(\frac{1}{2}\sqrt{2}\bigr)^2 = \frac{\pi}{2}</math> The combination of the last two formulas gives the following result: : <math>K(\varepsilon)E(\sqrt{1 - \varepsilon^2}) + E(\varepsilon)K(\sqrt{1 - \varepsilon^2}) - K(\varepsilon)K(\sqrt{1 - \varepsilon^2}) = \tfrac{1}{2}\pi</math> Because if the derivative of a continuous function constantly takes the value zero, then the concerned function is a constant function. This means that this function results in the same function value for each abscissa value <math> \varepsilon </math> and the associated function graph is therefore a horizontal straight line.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)