Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geographic coordinate conversion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Molodensky-Badekas transformation === To eliminate the coupling between the rotations and translations of the Helmert transform, three additional parameters can be introduced to give a new XYZ center of rotation closer to coordinates being transformed. This ten-parameter model is called the ''Molodensky-Badekas transformation'' and should not be confused with the more basic Molodensky transform.{{r|OGP7_2|page1=133-134}} Like the Helmert transform, using the Molodensky-Badekas transform is a three-step process: # Convert from geodetic coordinates to ECEF coordinates for datum <math>A</math> # Apply the Molodensky-Badekas transform, with the appropriate <math>A\to B</math> transform parameters, to transform from datum <math>A</math> ECEF coordinates to datum <math>B</math> ECEF coordinates # Convert from ECEF coordinates to geodetic coordinates for datum <math>B</math> The transform has the form<ref name=MB_NGA>{{cite web|title=Molodensky-Badekas (7+3) Transformations|url=http://earth-info.nga.mil/GandG/coordsys/datums/molodensky.html|publisher=National Geospatial Intelligence Agency (NGA)|access-date=5 March 2014|archive-date=19 July 2013|archive-url=https://web.archive.org/web/20130719151529/http://earth-info.nga.mil/GandG/coordsys/datums/molodensky.html|url-status=live}}</ref> : <math> \begin{bmatrix} X_B \\ Y_B \\ Z_B \end{bmatrix} = \begin{bmatrix} X_A \\ Y_A \\ Z_A \end{bmatrix} + \begin{bmatrix} \Delta X_A \\ \Delta Y_A \\ \Delta Z_A \end{bmatrix} + \begin{bmatrix} 1 & -r_z & r_y \\ r_z & 1 & -r_x \\ -r_y & r_x & 1 \end{bmatrix} \begin{bmatrix} X_A - X^0_A \\ Y_A - Y^0_A \\ Z_A - Z^0_A \end{bmatrix} + \Delta S \begin{bmatrix} X_A - X^0_A \\ Y_A - Y^0_A \\ Z_A - Z^0_A \end{bmatrix}. </math> where <math>\left(X^0_A,\, Y^0_A,\, Z^0_A\right)</math> is the origin for the rotation and scaling transforms and <math>\Delta S</math> is the scaling factor. The Molodensky-Badekas transform is used to transform local geodetic datums to a global geodetic datum, such as WGS 84. Unlike the Helmert transform, the Molodensky-Badekas transform is not reversible due to the rotational origin being associated with the original datum.{{r|OGP7_2|page1=134}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)