Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hermitian matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Singular values === The singular values of <math>A</math> are the absolute values of its eigenvalues: Since <math>A</math> has an eigendecomposition <math>A=U\Lambda U^H</math>, where <math>U</math> is a [[unitary matrix]] (its columns are orthonormal vectors; [[Hermitian matrix#Eigendecomposition|see above]]), a [[singular value decomposition]] of <math>A</math> is <math>A=U|\Lambda|\text{sgn}(\Lambda)U^H</math>, where <math>|\Lambda|</math> and <math>\text{sgn}(\Lambda)</math> are diagonal matrices containing the absolute values <math>|\lambda|</math> and signs <math>\text{sgn}(\lambda)</math> of <math>A</math>'s eigenvalues, respectively. <math>\sgn(\Lambda)U^H</math> is unitary, since the columns of <math>U^H</math> are only getting multiplied by <math>\pm 1</math>. <math>|\Lambda|</math> contains the singular values of <math>A</math>, namely, the absolute values of its eigenvalues.<ref>{{Cite book |last1=Trefethan |first1=Lloyd N. |url=http://worldcat.org/oclc/1348374386 |title=Numerical linear algebra |last2=Bau, III |first2=David |publisher=[[SIAM]] |year=1997 |isbn=0-89871-361-7 |location=Philadelphia, PA, USA |pages=34 |oclc=1348374386}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)