Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
History of computing hardware
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Commercial computers=== The first commercial electronic computer was the [[Ferranti Mark 1]], built by [[Ferranti]] and delivered to the [[University of Manchester]] in February 1951. It was based on the [[Manchester Mark 1]]. The main improvements over the Manchester Mark 1 were in the size of the [[primary storage]] (using [[Random-access memory|random access]] [[Williams tubes]]), [[secondary storage]] (using a [[drum memory|magnetic drum]]), a faster multiplier, and additional instructions. The basic cycle time was 1.2 milliseconds, and a multiplication could be completed in about 2.16 milliseconds. The multiplier used almost a quarter of the machine's 4,050 vacuum tubes (valves).{{sfn|Lavington|1998|p=25}} A second machine was purchased by the [[University of Toronto]], before the design was revised into the [[Ferranti Mark 1#Mark 1 Star|Mark 1 Star]]. At least seven of these later machines were delivered between 1953 and 1957, one of them to [[Royal Dutch Shell|Shell]] labs in Amsterdam.<ref>{{Citation |publisher=Computer Conservation Society |title=Our Computer Heritage Pilot Study: Deliveries of Ferranti Mark I and Mark I Star computers. |url=https://www.ourcomputerheritage.org/wp/ |archive-url=https://web.archive.org/web/20161211201840/http://www.ourcomputerheritage.org/wp/ |url-status=dead |archive-date=11 December 2016 |access-date=9 January 2010 }}</ref> In October 1947, the directors of [[J. Lyons and Co.|J. Lyons & Company]], a British catering company famous for its teashops but with strong interests in new office management techniques, decided to take an active role in promoting the commercial development of computers. The [[LEO computer|LEO I]] computer (Lyons Electronic Office) became operational in April 1951<ref>{{cite web | last = Lavington | first = Simon | title = A brief history of British computers: the first 25 years (1948–1973). | publisher = [[British Computer Society]] | url = http://www.bcs.org/server.php? | access-date = 10 January 2010 | archive-date = 2010-07-05 | archive-url = https://web.archive.org/web/20100705050757/http://www.bcs.org/server.php | url-status = dead }}</ref> and ran the world's first regular routine office computer [[job (software)|job]]. On 17 November 1951, the J. Lyons company began weekly operation of a bakery valuations job on the LEO – the first business [[:Category:Application software|application]] to go live on a stored-program computer.{{efn|{{harvnb|Martin|2008|p=24}} notes that [[David Caminer]] (1915–2008) served as the first corporate electronic systems analyst, for this first business computer system. LEO would calculate an employee's pay, handle billing, and other office automation tasks.}} In June 1951, the [[UNIVAC I]] (Universal Automatic Computer) was delivered to the [[United States Census Bureau|U.S. Census Bureau]]. Remington Rand eventually sold 46 machines at more than {{US$|1 million}} each (${{Formatprice|{{Inflation|US|1000000|1951|r=-4}}|0}} as of {{CURRENTYEAR}}).{{Inflation-fn|US}} UNIVAC was the first "mass-produced" computer. It used 5,200 vacuum tubes and consumed {{val|125|ul=kW}} of power. Its primary storage was [[Sequential access|serial-access]] mercury delay lines capable of storing 1,000 words of 11 decimal digits plus sign (72-bit words). In 1952, [[Groupe Bull|Compagnie des Machines Bull]] released the [[Bull Gamma 3|Gamma 3]] computer, which became a large success in Europe, eventually selling more than 1,200 units, and the first computer produced in more than 1,000 units.<ref name=":1">{{Cite journal |last=Leclerc |first=Bruno |date=January 1990 |title=From Gamma 2 to Gamma E.T.: The Birth of Electronic Computing at Bull |url=https://ieeexplore.ieee.org/document/4637512 |journal=Annals of the History of Computing |volume=12 |issue=1 |pages=5–22 |doi=10.1109/MAHC.1990.10010 |s2cid=15227017 |issn=0164-1239}}</ref> The Gamma 3 had innovative features for its time including a dual-mode, software switchable, BCD and binary ALU, as well as a hardwired floating-point library for scientific computing.<ref name=":1" /> In its E.T configuration, the Gamma 3 drum memory could fit about 50,000 instructions for a capacity of 16,384 words (around 100 kB), a large amount for the time.<ref name=":1" /> [[File:IBM-650-panel.jpg|thumb|right|Front panel of the [[IBM 650]] ]] Compared to the UNIVAC, IBM introduced a smaller, more affordable computer in 1954 that proved very popular.{{efn|For example, Kara Platoni's article on [[Donald Knuth]] stated that "there was something special about the IBM 650".<ref>{{cite magazine |first=Kara |last=Platoni |title=Love at First Byte |magazine=Stanford Magazine |url=https://www.stanfordalumni.org/news/magazine/2006/mayjun/features/knuth.html |date=May–June 2006 |archive-url= https://web.archive.org/web/20060925022700/http://www.stanfordalumni.org/news/magazine/2006/mayjun/features/knuth.html |archive-date=2006-09-25 |url-status=dead}}</ref>}}<ref> V. M. Wolontis (18 August 1955) "A Complete Floating-Decimal Interpretive System for the I.B.M. 650 Magnetic Drum Calculator—Case 20878" Bell Telephone Laboratories Technical Memorandum MM-114-37, Reported in IBM Technical Newsletter No. 11, March 1956, as referenced in {{cite journal |title=Wolontis-Bell Interpreter |publisher=IEEE |journal=Annals of the History of Computing |volume=8 |issue=1 |date=January–March 1986 |pages=74–76 |doi=10.1109/MAHC.1986.10008 |s2cid=36692260}} </ref> The [[IBM 650]] weighed over {{val|900|u=kg}}, the attached power supply weighed around {{val|1350|u=kg}} and both were held in separate cabinets of roughly 1.5{{times}}0.9{{times}}{{val|1.8|u=meters}}. The system cost {{US$|500000}}<ref>{{cite book |last=Dudley |first=Leonard |title=Information Revolution in the History of the West |year=2008 |url= https://books.google.com/books?id=jLnPi5aYoJUC&pg=PA266 |isbn=978-1-84720-790-6 |publisher=Edward Elgar Publishing |page=266 |access-date=2020-08-30}}</ref> (${{Formatprice|{{Inflation|US|500000|1954|r=-4}}|0}} as of {{CURRENTYEAR}}) or could be leased for {{US$|3500}} a month (${{Formatprice|{{Inflation|US|3500|1954|r=-4}}|0}} as of {{CURRENTYEAR}}).{{Inflation-fn|US}} Its drum memory was originally 2,000 ten-digit words, later expanded to 4,000 words. Memory limitations such as this were to dominate programming for decades afterward. The program instructions were fetched from the spinning drum as the code ran. Efficient execution using drum memory was provided by a combination of hardware architecture – the instruction format included the address of the next instruction – and software: the [[Symbolic Optimal Assembly Program]], SOAP,<ref>{{Citation |last=IBM |title=SOAP II for the IBM 650 |year=1957 |id=C24-4000-0 |url= http://www.bitsavers.org/pdf/ibm/650/24-4000-0_SOAPII.pdf |access-date=2009-05-25 |archive-date=2009-09-20 |archive-url=https://web.archive.org/web/20090920081523/http://www.bitsavers.org/pdf/ibm/650/24-4000-0_SOAPII.pdf |url-status=live}}</ref> assigned instructions to the optimal addresses (to the extent possible by static analysis of the source program). Thus many instructions were, when needed, located in the next row of the drum to be read and additional wait time for drum rotation was reduced.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)