Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Infinitesimal strain theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Strain tensor in non-Cartesian coordinates == === Strain tensor in cylindrical coordinates === In [[cylindrical polar coordinates]] (<math>r, \theta, z</math>), the displacement vector can be written as <math display="block"> \mathbf{u} = u_r~\mathbf{e}_r + u_\theta~\mathbf{e}_\theta + u_z~\mathbf{e}_z </math> The components of the strain tensor in a cylindrical coordinate system are given by:<ref name=Slaughter>{{cite book |last1=Slaughter |first1=William S. |title=The Linearized Theory of Elasticity |date=2002 |publisher=Springer Science+Business Media |location=New York |isbn=9781461266082 |doi=10.1007/978-1-4612-0093-2}}</ref> <math display="block">\begin{align} \varepsilon_{rr} & = \cfrac{\partial u_r}{\partial r} \\ \varepsilon_{\theta\theta} & = \cfrac{1}{r}\left(\cfrac{\partial u_\theta}{\partial \theta} + u_r\right) \\ \varepsilon_{zz} & = \cfrac{\partial u_z}{\partial z} \\ \varepsilon_{r\theta} & = \cfrac{1}{2} \left(\cfrac{1}{r}\cfrac{\partial u_r}{\partial \theta} + \cfrac{\partial u_\theta}{\partial r} - \cfrac{u_\theta}{r}\right) \\ \varepsilon_{\theta z} & = \cfrac{1}{2} \left(\cfrac{\partial u_\theta}{\partial z} + \cfrac{1}{r} \cfrac{\partial u_z}{\partial \theta}\right) \\ \varepsilon_{zr} & = \cfrac{1}{2} \left(\cfrac{\partial u_r}{\partial z} + \cfrac{\partial u_z}{\partial r}\right) \end{align}</math> === Strain tensor in spherical coordinates === [[File:3D Spherical.svg|class=skin-invert-image|thumb|240px|right|Spherical coordinates (''r'', ''θ'', ''φ'') as commonly used in ''physics'': radial distance ''r'', polar angle ''θ'' ([[theta]]), and azimuthal angle ''φ'' ([[phi]]). The symbol ''ρ'' ([[rho]]) is often used instead of ''r''.]] In [[spherical coordinates]] (<math>r, \theta, \phi</math>), the displacement vector can be written as <math display="block"> \mathbf{u} = u_r~\mathbf{e}_r + u_\theta~\mathbf{e}_\theta + u_\phi~\mathbf{e}_\phi </math> The components of the strain tensor in a spherical coordinate system are given by <ref name=Slaughter/> <math display="block">\begin{align} \varepsilon_{rr} & = \cfrac{\partial u_r}{\partial r} \\ \varepsilon_{\theta\theta} & = \cfrac{1}{r}\left(\cfrac{\partial u_\theta}{\partial \theta} + u_r\right) \\ \varepsilon_{\phi\phi} & = \cfrac{1}{r\sin\theta}\left(\cfrac{\partial u_\phi}{\partial \phi} + u_r\sin\theta + u_\theta\cos\theta\right)\\ \varepsilon_{r\theta} & = \cfrac{1}{2}\left(\cfrac{1}{r}\cfrac{\partial u_r}{\partial \theta} + \cfrac{\partial u_\theta}{\partial r}- \cfrac{u_\theta}{r}\right) \\ \varepsilon_{\theta \phi} & = \cfrac{1}{2r}\left(\cfrac{1}{\sin\theta}\cfrac{\partial u_\theta}{\partial \phi} + \cfrac{\partial u_\phi}{\partial \theta} - u_\phi\cot\theta\right) \\ \varepsilon_{\phi r} & = \cfrac{1}{2}\left(\cfrac{1}{r\sin\theta}\cfrac{\partial u_r}{\partial \phi} + \cfrac{\partial u_\phi}{\partial r} - \cfrac{u_\phi}{r}\right) \end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)