Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Invertible matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Blockwise inversion === Let <math> \mathbf M = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}</math> where {{math|'''A'''}}, {{math|'''B'''}}, {{math|'''C'''}} and {{math|'''D'''}} are [[block matrix|matrix sub-blocks]] of arbitrary size and <math>\mathbf M / \mathbf A := \mathbf D - \mathbf C \mathbf A^{-1} \mathbf B </math> is the [[Schur complement]] of {{math|'''A'''}}. ({{math|'''A'''}} must be square, so that it can be inverted. Furthermore, {{math|'''A'''}} and {{math|'''D''' − '''CA'''{{sup|−1}}'''B'''}} must be nonsingular.<ref> {{cite book |last=Bernstein |first=Dennis |title=Matrix Mathematics |publisher=Princeton University Press |year=2005 |isbn=978-0-691-11802-4 |pages=44}}</ref>) Matrices can also be ''inverted blockwise'' by using the analytic inversion formula:<ref>{{cite journal |last1=Tzon-Tzer |first1=Lu |last2=Sheng-Hua |first2=Shiou |title=Inverses of 2 × 2 block matrices |journal=Computers & Mathematics with Applications |date=2002 |volume=43 |issue=1–2 |pages=119–129 |doi=10.1016/S0898-1221(01)00278-4}}</ref> {{NumBlk |: | <math>\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}\ (\mathbf M / \mathbf A)^{-1}\mathbf{CA}^{-1} & -\mathbf{A}^{-1}\mathbf{B}\left(\mathbf M / \mathbf A \right)^{-1} \\ -\left(\mathbf M / \mathbf A \right)^{-1}\mathbf{CA}^{-1} & \left(\mathbf M / \mathbf A \right)^{-1} \end{bmatrix}, </math> | {{EquationRef|1}} }} The strategy is particularly advantageous if {{math|'''A'''}} is diagonal and {{math|'''M''' / '''A'''}} is a small matrix, since they are the only matrices requiring inversion. The [[nullity theorem]] says that the nullity of {{math|'''A'''}} equals the nullity of the sub-block in the lower right of the inverse matrix, and that the nullity of {{math|'''B'''}} equals the nullity of the sub-block in the upper right of the inverse matrix. The inversion procedure that led to Equation ({{EquationNote|1}}) performed matrix block operations that operated on {{math|'''C'''}} and {{math|'''D'''}} first. Instead, if {{math|'''A'''}} and {{math|'''B'''}} are operated on first, and provided {{math|'''D'''}} and {{math|1='''M''' / '''D''' := '''A''' − '''BD'''{{sup|−1}}'''C'''}} are nonsingular,<ref> {{cite book | last = Bernstein | first = Dennis | title = Matrix Mathematics | publisher = Princeton University Press | year = 2005 | pages = 45 | isbn = 978-0-691-11802-4 }} </ref> the result is {{NumBlk |: | <math> \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} \left( \mathbf M / \mathbf D \right)^{-1} & -\left( \mathbf M / \mathbf D \right)^{-1}\mathbf{BD}^{-1} \\ -\mathbf{D}^{-1}\mathbf{C}\left(\mathbf M / \mathbf D\right)^{-1} & \quad \mathbf{D}^{-1} + \mathbf{D}^{-1}\mathbf{C}\left(\mathbf M / \mathbf D\right)^{-1}\mathbf{BD}^{-1} \end{bmatrix}. </math> | {{EquationRef|2}} }} Equating the upper-left sub-matrices of Equations ({{EquationNote|1}}) and ({{EquationNote|2}}) leads to {{NumBlk |: | <math>\begin{align} \left(\mathbf{A} - \mathbf{BD}^{-1}\mathbf{C}\right)^{-1} &= \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}\left(\mathbf{D} - \mathbf{CA}^{-1}\mathbf{B}\right)^{-1}\mathbf{CA}^{-1} \\ \left(\mathbf{A} - \mathbf{BD}^{-1}\mathbf{C}\right)^{-1}\mathbf{BD}^{-1} &= \mathbf{A}^{-1}\mathbf{B}\left(\mathbf{D} - \mathbf{CA}^{-1}\mathbf{B}\right)^{-1} \\ \mathbf{D}^{-1}\mathbf{C}\left(\mathbf{A} - \mathbf{BD}^{-1}\mathbf{C}\right)^{-1} &= \left(\mathbf{D} - \mathbf{CA}^{-1}\mathbf{B}\right)^{-1}\mathbf{CA}^{-1} \\ \mathbf{D}^{-1} + \mathbf{D}^{-1}\mathbf{C}\left(\mathbf{A} - \mathbf{BD}^{-1}\mathbf{C}\right)^{-1}\mathbf{BD}^{-1} &= \left(\mathbf{D} - \mathbf{CA}^{-1}\mathbf{B}\right)^{-1} \end{align}</math> | {{EquationRef|3}} }} where Equation ({{EquationNote|3}}) is the [[Woodbury matrix identity]], which is equivalent to the [[binomial inverse theorem]]. If {{math|'''A'''}} and {{math|'''D'''}} are both invertible, then the above two block matrix inverses can be combined to provide the simple factorization {{NumBlk |: | <math>\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} \left(\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C}\right)^{-1} & \mathbf{0} \\ \mathbf{0} & \left(\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B}\right)^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{I} & -\mathbf{B} \mathbf{D}^{-1} \\ -\mathbf{C} \mathbf{A}^{-1} & \mathbf{I} \end{bmatrix}. </math> | {{EquationRef|2}} }} By the [[Weinstein–Aronszajn identity]], one of the two matrices in the block-diagonal matrix is invertible exactly when the other is. This formula simplifies significantly when the upper right block matrix {{math|'''B'''}} is the [[zero matrix]]. This formulation is useful when the matrices {{math|'''A'''}} and {{math|'''D'''}} have relatively simple inverse formulas (or [[Moore–Penrose inverse|pseudo inverses]] in the case where the blocks are not all square. In this special case, the block matrix inversion formula stated in full generality above becomes :<math>\begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} & \mathbf{0} \\ -\mathbf{D}^{-1}\mathbf{CA}^{-1} & \mathbf{D}^{-1} \end{bmatrix}.</math> If the given invertible matrix is a symmetric matrix with invertible block {{math|'''A'''}} the following block inverse formula holds<ref name="Cormen"/> {{NumBlk |: | <math>\begin{bmatrix} \mathbf{A} & \mathbf{C}^T \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{C}^T \mathbf{S}^{-1}\mathbf{C}\mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{C}^T\mathbf{S}^{-1} \\ -\mathbf{S}^{-1}\mathbf{C}\mathbf{A}^{-1} & \mathbf{S}^{-1} \end{bmatrix}, </math> | {{EquationRef|4}} }} where <math>\mathbf{S} = \mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{C}^T</math>. This requires 2 inversions of the half-sized matrices {{math|'''A'''}} and {{math|'''S'''}} and only 4 multiplications of half-sized matrices, if organized properly <math display=block>\begin{align} \mathbf{W}_1 &= \mathbf{C}\mathbf{A}^{-1}, \\[3mu] \mathbf{W}_2 &= \mathbf{W}_1\mathbf{C}^{T}=\mathbf{C}\mathbf{A}^{-1}\mathbf{C}^T, \\[3mu] \mathbf{W}_3 &= \mathbf{S}^{-1}\mathbf{W}_1=\mathbf{S}^{-1}\mathbf{C}\mathbf{A}^{-1}, \\[3mu] \mathbf{W}_4 &= \mathbf{W}_1^T\mathbf{W}_3=\mathbf{A}^{-1}\mathbf{C}^T \mathbf{S}^{-1}\mathbf{C}\mathbf{A}^{-1}, \end{align}</math> together with some additions, subtractions, negations and transpositions of negligible complexity. Any matrix <math>\mathbf{M}</math> has an associated positive semidefinite, symmetric matrix <math>\mathbf{M}^T\mathbf{M}</math>, which is exactly invertible (and positive definite), if and only if <math>\mathbf{M}</math> is invertible. By writing <math>\mathbf{M}^{-1}=\left(\mathbf{M}^T\mathbf{M}\right)^{-1}\mathbf{M}^T</math> matrix inversion can be reduced to inverting symmetric matrices and 2 additional matrix multiplications, because the [[Definite_matrix#Decomposition|positive definite matrix]] <math>\mathbf{M}^T\mathbf{M}</math> satisfies the invertibility condition for its left upper block {{math|'''A'''}}. Those formulas together allow to construct a [[divide and conquer algorithm]] that uses blockwise inversion of associated symmetric matrices to invert a matrix with the same time complexity as the [[matrix multiplication algorithm]] that is used internally.<ref name="Cormen">T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, ''Introduction to Algorithms'', 3rd ed., MIT Press, Cambridge, MA, 2009, §28.2.</ref> [[Computational complexity of matrix multiplication|Research into matrix multiplication complexity]] shows that there exist matrix multiplication algorithms with a complexity of {{math|''O''(''n''<sup>2.371552</sup>)}} operations, while the best proven lower bound is {{math|[[Big O notation#Family of Bachmann–Landau notations|Ω]](''n''{{sup|2}} log ''n'')}}.<ref>[[Ran Raz]]. On the complexity of matrix product. In Proceedings of the thirty-fourth annual ACM symposium on Theory of computing. ACM Press, 2002. {{doi|10.1145/509907.509932}}.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)