Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jordan normal form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Matrix functions == {{Main|Matrix function}} Iteration of the Jordan chain motivates various extensions to more abstract settings. For finite matrices, one gets matrix functions; this can be extended to compact operators and the holomorphic functional calculus, as described further below. The Jordan normal form is the most convenient for computation of the matrix functions (though it may be not the best choice for computer computations). Let ''f''(''z'') be an analytical function of a complex argument. Applying the function on a ''n''Γ''n'' Jordan block ''J'' with eigenvalue ''Ξ»'' results in an upper triangular matrix: :<math> f(J) =\begin{bmatrix} f(\lambda) & f'(\lambda) & \tfrac{f''(\lambda)}{2} & \cdots & \tfrac{f^{(n-1)}(\lambda)}{(n-1)!}\\ 0 & f(\lambda) & f'(\lambda) & \cdots & \tfrac{f^{(n-2)}(\lambda)}{(n-2)!} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & f(\lambda) & f'(\lambda) \\ 0 & 0 & 0 & 0 & f(\lambda) \end{bmatrix},</math> so that the elements of the ''k''-th superdiagonal of the resulting matrix are <math>\tfrac{f^{(k)}(\lambda)}{k!}</math>. For a matrix of general Jordan normal form the above expression shall be applied to each Jordan block. The following example shows the application to the power function ''f''(''z'') = ''z<sup>n</sup>'': :<math> \begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 1 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & 0 & \lambda_2 & 1 \\ 0 & 0 & 0 & 0 & \lambda_2 \end{bmatrix}^n =\begin{bmatrix} \lambda_1^n & \tbinom{n}{1}\lambda_1^{n-1} & \tbinom{n}{2}\lambda_1^{n-2} & 0 & 0 \\ 0 & \lambda_1^n & \tbinom{n}{1}\lambda_1^{n-1} & 0 & 0 \\ 0 & 0 & \lambda_1^n & 0 & 0 \\ 0 & 0 & 0 & \lambda_2^n & \tbinom{n}{1}\lambda_2^{n-1} \\ 0 & 0 & 0 & 0 & \lambda_2^n \end{bmatrix},</math> where the binomial coefficients are defined as <math display="inline">\binom{n}{k}=\prod_{i=1}^k \frac{n+1-i}{i}</math>. For integer positive ''n'' it reduces to standard definition of the coefficients. For negative ''n'' the identity <math display="inline">\binom{-n} k = (-1)^k\binom{n+k-1}{k}</math> may be of use.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)