Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lambda-CDM model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Cold dark matter discrepancies === {{main|Cold dark matter#Challenges}} Several discrepancies between the predictions of [[cold dark matter]] in the ΛCDM model and observations of galaxies and their clustering have arisen. Some of these problems have proposed solutions, but it remains unclear whether they can be solved without abandoning the ΛCDM model.<ref>{{Cite journal |arxiv=1006.1647 |title=Local-Group tests of dark-matter Concordance Cosmology: Towards a new paradigm for structure formation |year=2010 |last1=Kroupa |first1=P. |last2=Famaey |first2=B. |last3=de Boer |first3=Klaas S. |last4=Dabringhausen |first4=Joerg |last5=Pawlowski |first5=Marcel |last6=Boily |first6=Christian |last7=Jerjen |first7=Helmut |last8=Forbes |first8=Duncan |last9=Hensler |first9=Gerhard |journal=Astronomy and Astrophysics |volume=523 |pages=32–54 |doi=10.1051/0004-6361/201014892 |bibcode=2010A&A...523A..32K|s2cid=11711780 }}</ref> [[Mordehai Milgrom|Milgrom]], [[Stacy McGaugh|McGaugh]], and [[Pavel Kroupa|Kroupa]] have criticized the dark matter portions of the theory from the perspective of [[galaxy formation]] models and supporting the alternative [[modified Newtonian dynamics]] (MOND) theory, which requires a modification of the [[Einstein field equations]] and the [[Friedmann equations]] as seen in proposals such as [[modified gravity theory]] (MOG theory) or [[tensor–vector–scalar gravity]] theory (TeVeS theory).{{citation needed|date=January 2025}} Other proposals by theoretical astrophysicists of cosmological alternatives to Einstein's general relativity that attempt to account for dark energy or dark matter include [[f(R) gravity]], [[Scalar–tensor theory|scalar–tensor theories]] such as {{ill|galileon|ko}} theories (see [[Galilean invariance]]), [[brane cosmology|brane cosmologies]], the [[DGP model]], and [[massive gravity]] and its extensions such as [[bimetric theory|bimetric gravity]].{{citation needed|date=February 2024}} ==== Cuspy halo problem ==== {{main|Cuspy halo problem}} The density distributions of dark matter halos in cold dark matter simulations (at least those that do not include the impact of baryonic feedback) are much more peaked than what is observed in galaxies by investigating their rotation curves.<ref>{{Cite journal |title=The cored distribution of dark matter in spiral galaxies|year=2004 |last1=Gentile |first1=G. |last2=Salucci |first2=P. |journal=Monthly Notices of the Royal Astronomical Society |volume=351 |issue=3 |pages=903–922 |doi=10.1111/j.1365-2966.2004.07836.x |doi-access=free |arxiv=astro-ph/0403154 |bibcode = 2004MNRAS.351..903G|s2cid=14308775 }}</ref> ==== Dwarf galaxy problem ==== {{main|Dwarf galaxy problem}} Cold dark matter simulations predict large numbers of small dark matter halos, more numerous than the number of small dwarf galaxies that are observed around galaxies like the [[Milky Way]].<ref name=Klypin>{{cite journal |last1=Klypin |first1=Anatoly |last2=Kravtsov |first2=Andrey V. |last3=Valenzuela |first3=Octavio |last4=Prada |first4=Francisco |year=1999 |title=Where are the missing galactic satellites? |journal=Astrophysical Journal |volume=522 |issue=1 |pages=82–92 |doi=10.1086/307643 |bibcode=1999ApJ...522...82K |arxiv=astro-ph/9901240|s2cid=12983798 }}</ref> ==== Satellite disk problem ==== Dwarf galaxies around the [[Milky Way]] and [[Andromeda Galaxy|Andromeda]] galaxies are observed to be orbiting in thin, planar structures whereas the simulations predict that they should be distributed randomly about their parent galaxies.<ref name=Pawlowski>{{cite journal |first1=Marcel |last1=Pawlowski |display-authors=etal |title=Co-orbiting satellite galaxy structures are still in conflict with the distribution of primordial dwarf galaxies |journal=Monthly Notices of the Royal Astronomical Society |volume=442 |issue=3 |pages=2362–2380 |year=2014 |arxiv=1406.1799|doi=10.1093/mnras/stu1005 |doi-access=free |bibcode=2014MNRAS.442.2362P }}</ref> However, latest research suggests this seemingly bizarre alignment is just a quirk which will dissolve over time.<ref name="Sawala">{{cite journal |first1=Till |last1=Sawala |first2=Marius |last2=Cautun |first3=Carlos |last3=Frenk |display-authors=etal |title=The Milky Way's plane of satellites: consistent with ΛCDM|journal=Nature Astronomy |year=2022 |volume=7 |issue=4 |pages=481–491 |arxiv=2205.02860|doi=10.1038/s41550-022-01856-z |bibcode=2023NatAs...7..481S|s2cid=254920916 }}</ref> ==== High-velocity galaxy problem ==== Galaxies in the [[NGC 3109]] association are moving away too rapidly to be consistent with expectations in the ΛCDM model.<ref>{{Cite journal|last1=Banik|first1=Indranil|last2=Zhao|first2=H|date=2018-01-21|title=A plane of high velocity galaxies across the Local Group|journal=Monthly Notices of the Royal Astronomical Society|volume=473|issue=3|pages=4033–4054|doi=10.1093/mnras/stx2596|arxiv=1701.06559|bibcode=2018MNRAS.473.4033B|issn=0035-8711|doi-access=free}}</ref> In this framework, [[NGC 3109]] is too massive and distant from the [[Local Group]] for it to have been flung out in a three-body interaction involving the [[Milky Way]] or [[Andromeda Galaxy]].<ref>{{Cite journal|last1=Banik|first1=Indranil|last2=Haslbauer|first2=Moritz|last3=Pawlowski|first3=Marcel S.|last4=Famaey|first4=Benoit|last5=Kroupa|first5=Pavel|date=2021-06-21|title=On the absence of backsplash analogues to NGC 3109 in the ΛCDM framework|journal=Monthly Notices of the Royal Astronomical Society|volume=503|issue=4|pages=6170–6186|doi=10.1093/mnras/stab751|arxiv=2105.04575|bibcode=2021MNRAS.503.6170B|issn=0035-8711|doi-access=free}}</ref> ==== Galaxy morphology problem ==== If galaxies grew hierarchically, then massive galaxies required many mergers. [[Galaxy merger|Major mergers]] inevitably create a classical [[Bulge (astronomy)|bulge]]. On the contrary, about 80% of observed galaxies give evidence of no such bulges, and giant pure-disc galaxies are commonplace.<ref name="kormendy2010">{{cite journal |last1=Kormendy |first1=J. |author1-link=John Kormendy |last2=Drory |first2=N. |last3=Bender |first3=R. |last4=Cornell |first4=M.E. |title=Bulgeless giant galaxies challenge our picture of galaxy formation by hierarchical clustering |year=2010 |journal=[[The Astrophysical Journal]] |volume=723 |issue=1 |pages=54–80 |doi=10.1088/0004-637X/723/1/54 |arxiv=1009.3015 |bibcode=2010ApJ...723...54K|s2cid=119303368 }}</ref> The tension can be quantified by comparing the observed distribution of galaxy shapes today with predictions from high-resolution hydrodynamical cosmological simulations in the ΛCDM framework, revealing a highly significant problem that is unlikely to be solved by improving the resolution of the simulations.<ref name="Haslbauer2022">{{cite journal |last1=Haslbauer|first1=M|last2=Banik|first2=I|last3=Kroupa|first3=P|last4=Wittenburg|first4=N|last5=Javanmardi|first5=B|title=The High Fraction of Thin Disk Galaxies Continues to Challenge ΛCDM Cosmology|date=2022-02-01|journal=[[The Astrophysical Journal]]|volume=925|issue=2|page=183|doi=10.3847/1538-4357/ac46ac|issn=1538-4357|arxiv=2202.01221|bibcode=2022ApJ...925..183H|doi-access=free}}</ref> The high bulgeless fraction was nearly constant for 8 billion years.<ref name="sachdeva2016">{{cite journal |last1=Sachdeva |first1=S. |last2=Saha |first2=K. |title=Survival of pure disk galaxies over the last 8 billion years |year=2016 |journal=The Astrophysical Journal Letters |volume=820 |issue=1 |pages=L4 |doi=10.3847/2041-8205/820/1/L4 |arxiv=1602.08942 |bibcode=2016ApJ...820L...4S|s2cid=14644377 |doi-access=free }}</ref> ==== Fast galaxy bar problem ==== If galaxies were embedded within massive halos of [[cold dark matter]], then the bars that often develop in their central regions would be slowed down by [[dynamical friction]] with the halo. This is in serious tension with the fact that observed galaxy bars are typically fast.<ref name="Roshan2021">{{Cite journal|last1=Mahmood|first1=R|last2=Ghafourian|first2=N|last3=Kashfi|first3=T|last4=Banik|first4=I|last5=Haslbauer|first5=M|last6=Cuomo|first6=V|last7=Famaey|first7=B|last8=Kroupa|first8=P|date=2021-11-01|title=Fast galaxy bars continue to challenge standard cosmology|journal=Monthly Notices of the Royal Astronomical Society|volume=508|issue=1|pages=926–939|doi=10.1093/mnras/stab2553|doi-access=free|arxiv=2106.10304|bibcode=2021MNRAS.508..926R|hdl=10023/24680|issn=0035-8711}}</ref> ==== Small scale crisis ==== Comparison of the model with observations may have some problems on sub-galaxy scales, possibly predicting [[Dwarf galaxy problem|too many dwarf galaxies]] and too much dark matter in the innermost regions of galaxies. This problem is called the "small scale crisis".<ref>{{Cite journal | title =Synopsis: Tackling the Small-Scale Crisis |journal = Physical Review D|volume = 95|issue = 12|page = 121302| last =Rini | first =Matteo |doi = 10.1103/PhysRevD.95.121302|year = 2017|arxiv = 1703.10559|bibcode = 2017PhRvD..95l1302N|s2cid = 54675159}}</ref> These small scales are harder to resolve in computer simulations, so it is not yet clear whether the problem is the simulations, non-standard properties of dark matter, or a more radical error in the model. ==== High redshift galaxies ==== Observations from the [[James Webb Space Telescope]] have resulted in various galaxies confirmed by [[spectroscopy]] at high redshift, such as [[JADES-GS-z13-0]] at [[cosmological redshift]] of 13.2.<ref name="NASA-milestone">{{cite web|title = NASA's Webb Reaches New Milestone in Quest for Distant Galaxies|url = https://blogs.nasa.gov/webb/2022/12/09/nasas-webb-reaches-new-milestone-in-quest-for-distant-galaxies/|first = Thaddeus|last = Cesari|date = 9 December 2022|access-date = 9 December 2022}}</ref><ref name="Curtis-Lake2022">{{cite web|display-authors = etal|first1 = Emma|last1 = Curtis-Lake|title = Spectroscopy of four metal-poor galaxies beyond redshift ten|url = https://webbtelescope.org/files/live/sites/webb/files/home/webb-science/early-highlights/_documents/2022-061-jades/JADES_CurtisLake.pdf|date = December 2022| arxiv=2212.04568 }}</ref> Other candidate galaxies which have not been confirmed by spectroscopy include [[CEERS-93316]] at cosmological [[redshift]] of 16.4. Existence of surprisingly massive galaxies in the early universe challenges the preferred models describing how dark matter halos drive galaxy formation. It remains to be seen whether a revision of the Lambda-CDM model with parameters given by Planck Collaboration is necessary to resolve this issue. The discrepancies could also be explained by particular properties (stellar masses or effective volume) of the candidate galaxies, yet unknown force or particle outside of the [[Standard Model]] through which dark matter interacts, more efficient baryonic matter accumulation by the dark matter halos, early dark energy models,<ref name="SmithEtAl-2022">{{cite journal|title=Hints of early dark energy in Planck, SPT, and ACT data: New physics or systematics?|author1=Smith, Tristian L.|author2=Lucca, Matteo|author3=Poulin, Vivian|author4=Abellan, Guillermo F.|author5=Balkenhol, Lennart|author6=Benabed, Karim|author7=Galli, Silvia|author8=Murgia, Riccardo|journal=Physical Review D|volume=106|issue=4|date=August 2022|page=043526 |doi=10.1103/PhysRevD.106.043526|arxiv=2202.09379|bibcode=2022PhRvD.106d3526S|s2cid=247011465 }}</ref> or the hypothesized long-sought [[Population III stars]].<ref name="Boylan-Kolchin">{{cite journal|title=Stress testing ΛCDM with high-redshift galaxy candidates|first=Michael|last=Boylan-Kolchin|journal=Nature Astronomy |year=2023 |volume=7 |issue=6 |pages=731–735 |doi=10.1038/s41550-023-01937-7 |pmid=37351007 |pmc=10281863 |arxiv=2208.01611|bibcode=2023NatAs...7..731B |s2cid=251252960 }}</ref><ref name="SciAm2022">{{cite web|title=Astronomers Grapple with JWST's Discovery of Early Galaxies|url=https://www.scientificamerican.com/article/astronomers-grapple-with-jwsts-discovery-of-early-galaxies1/|last=O'Callaghan|first=Jonathan|website=[[Scientific American]] |date=6 December 2022|access-date=10 December 2022}}</ref><ref name="BehrooziEtAl">{{cite journal|title=The Universe at z > 10: predictions for JWST from the UNIVERSEMACHINE DR1|author1= Behroozi, Peter|author2=Conroy, Charlie|author3=Wechsler, Risa H.|author4=Hearin, Andrew|author5=Williams, Christina C.|author6=Moster, Benjamin P.|author7=Yung, L. Y. Aaron|author8=Somerville, Rachel S.|author9=Gottlöber, Stefan|author10=Yepes, Gustavo|author11=Endsley, Ryan|journal=Monthly Notices of the Royal Astronomical Society|volume=499|issue=4|pages=5702–5718|date=December 2020|doi=10.1093/mnras/staa3164|doi-access= free|arxiv=2007.04988|bibcode=2020MNRAS.499.5702B}}</ref><ref name="SpringelHernquist">{{cite journal|title=The history of star formation in a Λ cold dark matter universe|author1=Volker Springel|author2=Lars Hernquist|journal=Monthly Notices of the Royal Astronomical Society|volume=339|issue=2|pages=312–334|date=February 2003|doi=10.1046/j.1365-8711.2003.06207.x|doi-access=free |arxiv=astro-ph/0206395|bibcode=2003MNRAS.339..312S |s2cid=8715136 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)