Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Learning classifier system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Variants == === Michigan-Style Learning Classifier System === Michigan-Style LCSs are characterized by a population of rules where the genetic algorithm operates at the level of individual rules and the solution is represented by the entire rule population. Michigan style systems also learn incrementally which allows them to perform both reinforcement learning and supervised learning, as well as both online and offline learning. Michigan-style systems have the advantage of being applicable to a greater number of problem domains, and the unique benefits of incremental learning. === Pittsburgh-Style Learning Classifier System === Pittsburgh-Style LCSs are characterized by a population of variable length rule-sets where each rule-set is a potential solution. The genetic algorithm typically operates at the level of an entire rule-set. Pittsburgh-style systems can also uniquely evolve ordered rule lists, as well as employ a default rule. These systems have the natural advantage of identifying smaller rule sets, making these systems more interpretable with regards to manual rule inspection. === Hybrid systems === Systems that seek to combine key strengths of both systems have also been proposed.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)