Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Legendre polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Variants with transformed argument == === Shifted Legendre polynomials === The '''shifted Legendre polynomials''' are defined as <math display="block">\widetilde{P}_n(x) = P_n(2x-1) \,.</math> Here the "shifting" function {{math|''x'' ↦ 2''x'' − 1}} is an [[affine transformation]] that [[bijection|bijectively maps]] the interval {{closed-closed|0, 1}} to the interval {{closed-closed|−1, 1}}, implying that the polynomials {{math|''P̃<sub>n</sub>''(''x'')}} are orthogonal on {{closed-closed|0, 1}}: <math display="block">\int_0^1 \widetilde{P}_m(x) \widetilde{P}_n(x)\,dx = \frac{1}{2n + 1} \delta_{mn} \,.</math> An explicit expression for the shifted Legendre polynomials is given by <math display="block">\widetilde{P}_n(x) = (-1)^n \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k} (-x)^k \,.</math> The analogue of [[Rodrigues' formula]] for the shifted Legendre polynomials is <math display="block">\widetilde{P}_n(x) = \frac{1}{n!} \frac{d^n}{dx^n} \left(x^2 -x \right)^n \,.</math> The first few shifted Legendre polynomials are: {| class="wikitable" style="text-align: right;" ! <math>n</math> !! <math>\widetilde{P}_n(x)</math> |- | 0 || <math>1</math> |- | 1 || <math>2x-1</math> |- | 2 || <math>6x^2-6x+1</math> |- | 3 || <math>20x^3-30x^2+12x-1</math> |- | 4 || <math>70x^4-140x^3+90x^2-20x+1</math> |- | 5 || <math>252x^5 -630x^4 +560x^3 - 210 x^2 + 30 x - 1</math> |- |} === Legendre rational functions === {{main|Legendre rational functions}} The [[Legendre rational functions]] are a sequence of [[orthogonal functions]] on [0, ∞). They are obtained by composing the [[Cayley transform]] with Legendre polynomials. A rational Legendre function of degree ''n'' is defined as: <math display="block">R_n(x) = \frac{\sqrt{2}}{x+1}\,P_n\left(\frac{x-1}{x+1}\right)\,.</math> They are [[eigenfunction]]s of the singular [[Sturm–Liouville problem]]: <math display="block">\left(x+1\right) \frac{d}{dx} \left(x \frac{d}{dx} \left[\left(x+1\right) v(x)\right]\right) + \lambda v(x) = 0</math> with eigenvalues <math display="block">\lambda_n=n(n+1)\,.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)