Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Real and imaginary parts === If <math>\varphi \in X^{\#}</math> then denote its [[real part]] by <math>\varphi_{\R} := \operatorname{Re} \varphi</math> and its [[imaginary part]] by <math>\varphi_i := \operatorname{Im} \varphi.</math> Then <math>\varphi_{\R} : X \to \R</math> and <math>\varphi_i : X \to \R</math> are linear functionals on <math>X_{\R}</math> and <math>\varphi = \varphi_{\R} + i \varphi_i.</math> The fact that <math>z = \operatorname{Re} z - i \operatorname{Re} (i z) = \operatorname{Im} (i z) + i \operatorname{Im} z</math> for all <math>z \in \Complex</math> implies that for all <math>x \in X,</math>{{sfn|Rudin|1991|pp=57}} <math display=block>\begin{alignat}{4}\varphi(x) &= \varphi_{\R}(x) - i \varphi_{\R}(i x) \\ &= \varphi_i(i x) + i \varphi_i(x)\\ \end{alignat}</math> and consequently, that <math>\varphi_i(x) = - \varphi_{\R}(i x)</math> and <math>\varphi_{\R}(x) = \varphi_i(ix).</math>{{sfn|Narici|Beckenstein|2011|pp=9-11}} The assignment <math>\varphi \mapsto \varphi_{\R}</math> defines a [[Bijection|bijective]]{{sfn|Narici|Beckenstein|2011|pp=9-11}} <math>\R</math>-linear operator <math>X^{\#} \to X_{\R}^{\#}</math> whose inverse is the map <math>L_{\bull} : X_{\R}^{\#} \to X^{\#}</math> defined by the assignment <math>g \mapsto L_g</math> that sends <math>g : X_{\R} \to \R</math> to the linear functional <math>L_g : X \to \Complex</math> defined by <math display=block>L_g(x) := g(x) - i g(ix) \quad \text{ for all } x \in X.</math> The real part of <math>L_g</math> is <math>g</math> and the bijection <math>L_{\bull} : X_{\R}^{\#} \to X^{\#}</math> is an <math>\R</math>-linear operator, meaning that <math>L_{g+h} = L_g + L_h</math> and <math>L_{rg} = r L_g</math> for all <math>r \in \R</math> and <math>g, h \in X_\R^{\#}.</math>{{sfn|Narici|Beckenstein|2011|pp=9-11}} Similarly for the imaginary part, the assignment <math>\varphi \mapsto \varphi_i</math> induces an <math>\R</math>-linear bijection <math>X^{\#} \to X_{\R}^{\#}</math> whose inverse is the map <math>X_{\R}^{\#} \to X^{\#}</math> defined by sending <math>I \in X_{\R}^{\#}</math> to the linear functional on <math>X</math> defined by <math>x \mapsto I(i x) + i I(x).</math> This relationship was discovered by [[Henry Löwig]] in 1934 (although it is usually credited to F. Murray),{{sfn|Narici|Beckenstein|2011|pp=10-11}} and can be generalized to arbitrary [[Finite field extension|finite extensions of a field]] in the natural way. It has many important consequences, some of which will now be described.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)