Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logarithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Transcendence of the logarithm=== [[Real number]]s that are not [[Algebraic number|algebraic]] are called [[transcendental number|transcendental]];<ref>{{citation|title=Selected papers on number theory and algebraic geometry|volume=172|first1=Katsumi|last1=Nomizu|author-link=Katsumi Nomizu|location=Providence, RI|publisher=AMS Bookstore|year=1996|isbn=978-0-8218-0445-2|page=21|url={{google books |plainurl=y |id=uDDxdu0lrWAC|page=21}}}}</ref> for example, [[Pi|{{pi}}]] and ''[[e (mathematical constant)|e]]'' are such numbers, but <math>\sqrt{2-\sqrt 3}</math> is not. [[Almost all]] real numbers are transcendental. The logarithm is an example of a [[transcendental function]]. The [[Gelfond–Schneider theorem]] asserts that logarithms usually take transcendental, i.e. "difficult" values.<ref>{{Citation|last1=Baker|first1=Alan|author1-link=Alan Baker (mathematician)|title=Transcendental number theory|publisher=[[Cambridge University Press]]|isbn=978-0-521-20461-3|year=1975}}, p. 10</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)