Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Monad (category theory)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Algebras for a monad == {{see also|F-algebra|pseudoalgebra}} Given a monad <math>(T,\eta,\mu)</math> on a category <math>C</math>, it is natural to consider ''<math>T</math>-algebras'', i.e., objects of <math>C</math> acted upon by <math>T</math> in a way which is compatible with the unit and multiplication of the monad. More formally, a <math>T</math>-algebra <math>(x,h)</math> is an object <math>x</math> of <math>C</math> together with an arrow <math>h\colon Tx\to x</math> of <math>C</math> called the ''structure map'' of the algebra such that the diagrams {| align="center" |- |[[Image:Monad_multi_algebra.svg|class=skin-invert]] | width="20" | |and | width="20" | |[[Image:Monad_unit_algebra.svg|class=skin-invert]] |} commute. A morphism <math>f\colon (x,h)\to(x',h')</math> of <math>T</math>-algebras is an arrow <math>f\colon x\to x'</math> of <math>C</math> such that the diagram [[Image:Monad_morphism_algebra.svg|center]] commutes. <math>T</math>-algebras form a category called the ''Eilenberg–Moore category'' and denoted by <math>C^T</math>. === Examples === ==== Algebras over the free group monad ==== For example, for the free group monad discussed above, a <math>T</math>-algebra is a set <math>X</math> together with a map from the free group generated by <math>X</math> towards <math>X</math> subject to associativity and unitality conditions. Such a structure is equivalent to saying that <math>X</math> is a group itself. ==== Algebras over the distribution monad ==== Another example is the '''''distribution monad''''' <math>\mathcal{D}</math> on the category of sets. It is defined by sending a set <math>X</math> to the set of functions <math>f : X \to [0,1]</math> with finite support and such that their sum is equal to <math>1</math>. In set-builder notation, this is the set<math display="block">\mathcal{D}(X) = \left\{ f: X \to [0,1] : \begin{matrix} \#\text{supp}(f) < +\infty \\ \sum_{x \in X} f(x) = 1 \end{matrix} \right\}</math>By inspection of the definitions, it can be shown that algebras over the distribution monad are equivalent to [[convex set]]s, i.e., sets equipped with operations <math>x +_r y</math> for <math>r \in [0,1]</math> subject to axioms resembling the behavior of convex linear combinations <math>rx + (1-r)y</math> in Euclidean space.<ref>{{Citation |last=Świrszcz |first=T. |title=Monadic functors and convexity|journal=Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys.|volume=22 |year=1974 |pages=39–42|mr=0390019}}, {{Citation|doi=10.1007/978-3-642-15240-5_1|chapter=Convexity, Duality and Effects|title=Theoretical Computer Science|volume=323 |pages=1–19|series=IFIP Advances in Information and Communication Technology|year=2010|last1=Jacobs|first1=Bart |isbn=978-3-642-15239-9 |doi-access=free}}</ref> ==== Algebras over the symmetric monad ==== Another useful example of a monad is the symmetric algebra functor on the category of <math>R</math>-modules for a commutative ring <math>R</math>.<math display="block">\text{Sym}^\bullet(-): \text{Mod}(R) \to \text{Mod}(R)</math>sending an <math>R</math>-module <math>M</math> to the direct sum of [[symmetric tensor]] powers<math display="block">\text{Sym}^\bullet(M) = \bigoplus_{k=0}^\infty \text{Sym}^k(M)</math>where <math>\text{Sym}^0(M) = R</math>. For example, <math>\text{Sym}^\bullet(R^{\oplus n}) \cong R[x_1,\ldots, x_n]</math> where the <math>R</math>-algebra on the right is considered as a module. Then, an algebra over this monad are commutative <math>R</math>-algebras. There are also algebras over the monads for the alternating tensors <math>\text{Alt}^\bullet(-)</math> and total tensor functors <math>T^\bullet(-)</math> giving anti-symmetric <math>R</math>-algebras, and free <math>R</math>-algebras, so<math display="block">\begin{align} \text{Alt}^\bullet(R^{\oplus n}) &= R(x_1,\ldots, x_n)\\ \text{T}^\bullet(R^{\oplus n}) &= R\langle x_1,\ldots, x_n \rangle \end{align}</math>where the first ring is the free anti-symmetric algebra over <math>R</math> in <math>n</math>-generators and the second ring is the free algebra over <math>R</math> in <math>n</math>-generators. ==== Commutative algebras in E-infinity ring spectra ==== There is an analogous construction for [[S-module|commutative <math>\mathbb{S}</math>-algebras]]<ref>{{Cite journal|date=1999-12-15|title=André–Quillen cohomology of commutative S-algebras|journal=[[Journal of Pure and Applied Algebra]]|language=en|volume=144| issue=2|pages=111–143| doi=10.1016/S0022-4049(98)00051-6|issn=0022-4049|doi-access=free|last1=Basterra |first1=M. }}</ref><sup>pg 113</sup> which gives commutative <math>A</math>-algebras for a commutative <math>\mathbb{S}</math>-algebra <math>A</math>. If <math>\mathcal{M}_A</math> is the category of <math>A</math>-modules, then the functor <math>\mathbb{P}: \mathcal{M}_A \to \mathcal{M}_A</math> is the monad given by<math display="block">\mathbb{P}(M) = \bigvee_{j \geq 0} M^j/\Sigma_j</math>where<math display="block">M^j = M\wedge_A \cdots \wedge_A M</math> <math>j</math>-times. Then there is an associated category <math>\mathcal{C}_A</math> of commutative <math>A</math>-algebras from the category of algebras over this monad.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)