Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Maximum entropy === Of all probability distributions over the reals with a specified finite mean {{tmath|\mu}} and finite variance {{tmath|\sigma^2}}, the normal distribution <math display=inline>N(\mu,\sigma^2)</math> is the one with [[Maximum entropy probability distribution|maximum entropy]].{{sfnp|Cover|Thomas|2006|p=254}} To see this, let {{tmath|X}} be a [[continuous random variable]] with [[probability density]] {{tmath|f(x)}}. The entropy of {{tmath|X}} is defined as<ref>{{cite book|last1=Williams|first1=David|title=Weighing the odds : a course in probability and statistics|url=https://archive.org/details/weighingoddscour00will|url-access=limited|date=2001|publisher=Cambridge Univ. Press|location=Cambridge [u.a.]|isbn=978-0-521-00618-7|pages=[https://archive.org/details/weighingoddscour00will/page/n219 197]β199|edition=Reprinted.}}</ref><ref>{{cite book|author1=JosΓ© M. Bernardo |author2=Adrian F. M. Smith|title=Bayesian theory|url=https://archive.org/details/bayesiantheory00bern_963|url-access=limited|date=2000|publisher=Wiley|location=Chichester [u.a.]|isbn=978-0-471-49464-5|pages=[https://archive.org/details/bayesiantheory00bern_963/page/n224 209], 366|edition=Reprint}}</ref><ref>O'Hagan, A. (1994) ''Kendall's Advanced Theory of statistics, Vol 2B, Bayesian Inference'', Edward Arnold. {{isbn|0-340-52922-9}} (Section 5.40)</ref> <math display=block> H(X) = - \int_{-\infty}^\infty f(x)\ln f(x)\, dx\,, </math> where <math display=inline>f(x)\log f(x)</math> is understood to be zero whenever {{tmath|1=f(x)=0}}. This functional can be maximized, subject to the constraints that the distribution is properly normalized and has a specified mean and variance, by using [[variational calculus]]. A function with three [[Lagrange multipliers]] is defined: <math display=block> L=-\int_{-\infty}^\infty f(x)\ln f(x)\,dx-\lambda_0\left(1-\int_{-\infty}^\infty f(x)\,dx\right)-\lambda_1\left(\mu-\int_{-\infty}^\infty f(x)x\,dx\right)-\lambda_2\left(\sigma^2-\int_{-\infty}^\infty f(x)(x-\mu)^2\,dx\right)\,. </math> At maximum entropy, a small variation <math display=inline>\delta f(x)</math> about <math display=inline>f(x)</math> will produce a variation <math display=inline>\delta L</math> about {{tmath|L}} which is equal to 0: <math display=block> 0=\delta L=\int_{-\infty}^\infty \delta f(x)\left(-\ln f(x) -1+\lambda_0+\lambda_1 x+\lambda_2(x-\mu)^2\right)\,dx\,. </math> Since this must hold for any small {{tmath|\delta f(x)}}, the factor multiplying {{tmath|\delta f(x)}} must be zero, and solving for {{tmath|f(x)}} yields: <math display=block>f(x)=\exp\left(-1+\lambda_0+\lambda_1 x+\lambda_2(x-\mu)^2\right)\,.</math> The Lagrange constraints that {{tmath|f(x)}} is properly normalized and has the specified mean and variance are satisfied if and only if {{tmath|\lambda_0}}, {{tmath|\lambda_1}}, and {{tmath|\lambda_2}} are chosen so that <math display=block> f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\,. </math> The entropy of a normal distribution <math display=inline>X \sim N(\mu,\sigma^2)</math> is equal to <math display=block> H(X)=\tfrac{1}{2}(1+\ln 2\sigma^2\pi)\,, </math> which is independent of the mean {{tmath|\mu}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)