Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Numerical analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Software== {{Main|List of numerical-analysis software|Comparison of numerical-analysis software}} Since the late twentieth century, most algorithms are implemented in a variety of programming languages. The [[Netlib]] repository contains various collections of software routines for numerical problems, mostly in [[Fortran]] and [[C (programming language)|C]]. Commercial products implementing many different numerical algorithms include the [[IMSL Numerical Libraries|IMSL]] and [[Numerical Algorithms Group|NAG]] libraries; a [[free software|free-software]] alternative is the [[GNU Scientific Library]]. Over the years the [[Royal Statistical Society]] published numerous algorithms in its [[Journal of the Royal Statistical Society, Series C (Applied Statistics)|''Applied Statistics'']] (code for these "AS" functions is [https://jblevins.org/mirror/amiller/#apstat here]); [[Association for Computing Machinery|ACM]] similarly, in its ''[[Transactions on Mathematical Software]]'' ("TOMS" code is [https://jblevins.org/mirror/amiller/#toms here]). The [[Naval Surface Warfare Center]] several times published its [https://apps.dtic.mil/sti/pdfs/ADA476840.pdf ''Library of Mathematics Subroutines''] (code [https://jblevins.org/mirror/amiller/#nswc here]). There are several popular numerical computing applications such as [[MATLAB]],<ref>{{cite book |last1=Quarteroni |first1=A. |last2=Saleri |first2=F. |last3=Gervasio |first3=P. |title=Scientific computing with MATLAB and Octave |publisher=Springer |edition=4th |date=2014 |isbn=978-3-642-45367-0 |url={{GBurl|_0m9BAAAQBAJ|pg=PR11}}}}</ref><ref name="gh">{{cite book |editor1-last=Gander |editor1-first=W. |editor2-last=Hrebicek |editor2-first=J. |title=Solving problems in scientific computing using Maple and Matlab® |publisher=Springer |date=2011 |isbn=978-3-642-18873-2 |url={{GBurl|di2qCAAAQBAJ|pg=PR14}}}}</ref><ref name="bf">{{cite book |last1=Barnes |first1=B. |last2=Fulford |first2=G.R. |title=Mathematical modelling with case studies: a differential equations approach using Maple and MATLAB |publisher=CRC Press |edition=2nd |date=2011 |isbn=978-1-4200-8350-7 |oclc=1058138488 }}</ref> [[TK Solver]], [[S-PLUS]], and [[IDL (programming language)|IDL]]<ref>{{cite book |first=L.E. |last=Gumley |title=Practical IDL programming |publisher=Elsevier |date=2001 |isbn=978-0-08-051444-4 |url={{GBurl|1d-tNpm_x4gC|pg=PR9}}}}</ref> as well as free and open-source alternatives such as [[FreeMat]], [[Scilab]],<ref>{{cite book |last1=Bunks |first1=C. |last2=Chancelier |first2=J.P. |last3=Delebecque |first3=F. |last4=Goursat |first4=M. |last5=Nikoukhah |first5=R. |last6=Steer |first6=S. |title=Engineering and scientific computing with Scilab |publisher=Springer |date=2012 |isbn=978-1-4612-7204-5 }}</ref><ref>{{cite book |last1=Thanki |first1=R.M. |last2=Kothari |first2=A.M. |title=Digital image processing using SCILAB |publisher=Springer |date=2019 |isbn=978-3-319-89533-8 |url={{GBurl|VydaDwAAQBAJ|pg=PR9}}}}</ref> [[GNU Octave]] (similar to Matlab), and [[IT++]] (a C++ library). There are also programming languages such as [[R (programming language)|R]]<ref>{{cite journal |last1=Ihaka |first1=R. |last2=Gentleman |first2=R. |title=R: a language for data analysis and graphics |journal=Journal of Computational and Graphical Statistics |volume=5 |issue=3 |pages=299–314 |date=1996 |doi=10.1080/10618600.1996.10474713 |s2cid=60206680 |url=https://www.stat.auckland.ac.nz/~ihaka/downloads/R-paper.pdf}}</ref> (similar to S-PLUS), [[Julia (programming language)|Julia]],<ref>{{Cite journal|last1=Bezanson|first1=Jeff|last2=Edelman|first2=Alan|last3=Karpinski|first3=Stefan|last4=Shah|first4=Viral B.|date=2017-01-01|title=Julia: A Fresh Approach to Numerical Computing|url=https://epubs.siam.org/doi/abs/10.1137/141000671|journal=SIAM Review|volume=59|issue=1|pages=65–98|doi=10.1137/141000671|arxiv=1411.1607 |issn=0036-1445|hdl=1721.1/110125|s2cid=13026838 |hdl-access=free}}</ref> and [[Python (programming language)|Python]] with libraries such as [[NumPy]], [[SciPy]]<ref>Jones, E., Oliphant, T., & Peterson, P. (2001). SciPy: Open source scientific tools for Python.</ref><ref>{{cite book |first=E. |last=Bressert |title=SciPy and NumPy: an overview for developers |publisher=O'Reilly |date=2012 |isbn=9781306810395 }}</ref><ref>{{cite book |first=F.J. |last=Blanco-Silva |title=Learning SciPy for numerical and scientific computing |publisher=Packt |date=2013 |isbn=9781782161639 }}</ref> and [[SymPy]]. Performance varies widely: while vector and matrix operations are usually fast, scalar loops may vary in speed by more than an order of magnitude.<ref>[http://www.sciviews.org/benchmark/ Speed comparison of various number crunching packages] {{webarchive |url=https://web.archive.org/web/20061005024002/http://www.sciviews.org/benchmark/ |date=5 October 2006 }}</ref><ref>[http://www.scientificweb.com/ncrunch/ncrunch5.pdf Comparison of mathematical programs for data analysis] {{Webarchive|url=http://arquivo.pt/wayback/20160518062220/http://www.scientificweb.com/ncrunch/ncrunch5.pdf |date=18 May 2016 }} Stefan Steinhaus, ScientificWeb.com</ref> Many [[computer algebra system]]s such as [[Mathematica]] also benefit from the availability of [[arbitrary-precision arithmetic]] which can provide more accurate results.<ref>{{cite book |first=R.E. |last=Maeder |title=Programming in mathematica |publisher=Addison-Wesley |edition=3rd |date=1997 |isbn=9780201854497 |oclc=1311056676 |url=https://archive.org/details/programminginmat0000maed_l2m6}}</ref><ref>{{cite book |first=Stephen |last=Wolfram |date=1999 |title=The MATHEMATICA® book, version 4 |publisher=[[Cambridge University Press]] |url={{GBurl|Xny77v_QPkEC|pg=PR19}} |isbn=9781579550042 }}</ref><ref>{{cite book |last1=Shaw |first1=W.T. |last2=Tigg |first2=J. |title=Applied Mathematica: getting started, getting it done |publisher=Addison-Wesley |date=1993 |isbn=978-0-201-54217-2 |oclc=28149048 |url=http://www.gbv.de/dms/bowker/toc/9780201542172.pdf}}</ref><ref>{{cite book |last1=Marasco |first1=A. |last2=Romano |first2=A. |title=Scientific Computing with Mathematica: Mathematical Problems for Ordinary Differential Equations |publisher=Springer |date=2001 |isbn=978-0-8176-4205-1 |url={{GBurl|iFRqemnmMqUC|pg=PR7}}}}</ref> Also, any [[spreadsheet]] [[software]] can be used to solve simple problems relating to numerical analysis. [[Microsoft_Excel#|Excel]], for example, has hundreds of [[Microsoft Excel#Functions|available functions]], including for matrices, which may be used in conjunction with its [[Microsoft Excel#Add-ins|built in "solver"]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)