Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Partial differential equation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Finite element method === {{main|Finite element method}} The finite element method (FEM) (its practical application often known as finite element analysis (FEA)) is a numerical technique for finding approximate solutions of partial differential equations (PDE) as well as of integral equations.<ref>{{cite book |first=P. |last=Solin |title=Partial Differential Equations and the Finite Element Method |publisher=J. Wiley & Sons |location=Hoboken, New Jersey |year=2005 |isbn=0-471-72070-4 }}</ref><ref>{{cite book |first1=P. |last1=Solin |first2=K. |last2=Segeth |name-list-style=amp |first3=I. |last3=Dolezel |title=Higher-Order Finite Element Methods |publisher=Chapman & Hall/CRC Press |location=Boca Raton |year=2003 |isbn=1-58488-438-X }}</ref> The solution approach is based either on eliminating the differential equation completely (steady state problems), or rendering the PDE into an approximating system of ordinary differential equations, which are then numerically integrated using standard techniques such as Euler's method, Runge–Kutta, etc.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)