Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quadratic equation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Generalization of quadratic equation=== The formula and its derivation remain correct if the coefficients {{math|''a''}}, {{math|''b''}} and {{math|''c''}} are [[complex number]]s, or more generally members of any [[field (mathematics)|field]] whose [[characteristic (algebra)|characteristic]] is not {{math|2}}. (In a field of characteristic 2, the element {{math|2''a''}} is zero and it is impossible to divide by it.) The symbol <math display="block">\pm \sqrt {b^2-4ac}</math> in the formula should be understood as "either of the two elements whose square is {{math|''b''<sup>2</sup> − 4''ac''}}, if such elements exist". In some fields, some elements have no square roots and some have two; only zero has just one square root, except in fields of characteristic {{math|2}}. Even if a field does not contain a square root of some number, there is always a quadratic [[extension field]] which does, so the quadratic formula will always make sense as a formula in that extension field. ====Characteristic 2==== In a field of characteristic {{math|2}}, the quadratic formula, which relies on {{math|2}} being a [[unit (ring theory)|unit]], does not hold. Consider the [[monic polynomial|monic]] quadratic polynomial <math display="block">x^{2} + bx + c</math> over a field of characteristic {{math|2}}. If {{math|''b'' {{=}} 0}}, then the solution reduces to extracting a square root, so the solution is <math display="block">x = \sqrt{c}</math> and there is only one root since <math display="block">-\sqrt{c} = -\sqrt{c} + 2\sqrt{c} = \sqrt{c}.</math> In summary, <math display="block">\displaystyle x^{2} + c = (x + \sqrt{c})^{2}.</math> See [[quadratic residue]] for more information about extracting square roots in finite fields. In the case that {{math|''b'' ≠ 0}}, there are two distinct roots, but if the polynomial is [[irreducible polynomial|irreducible]], they cannot be expressed in terms of square roots of numbers in the coefficient field. Instead, define the '''2-root''' {{math|''R''(''c'')}} of {{math|''c''}} to be a root of the polynomial {{math|''x''<sup>2</sup> + ''x'' + ''c''}}, an element of the [[splitting field]] of that polynomial. One verifies that {{math|''R''(''c'') + 1}} is also a root. In terms of the 2-root operation, the two roots of the (non-monic) quadratic {{math|''ax''<sup>2</sup> + ''bx'' + ''c''}} are <math display="block">\frac{b}{a}R\left(\frac{ac}{b^2}\right)</math> and <math display="block">\frac{b}{a}\left(R\left(\frac{ac}{b^2}\right)+1\right).</math> For example, let {{math|''a''}} denote a multiplicative generator of the group of units of {{math|''F''<sub>4</sub>}}, the [[Galois field]] of order four (thus {{math|''a''}} and {{math|''a'' + 1}} are roots of {{math|''x''<sup>2</sup> + ''x'' + 1}} over {{math|''F''<sub>4</sub>}}. Because {{math|(''a'' + 1)<sup>2</sup> {{=}} ''a''}}, {{math|''a'' + 1}} is the unique solution of the quadratic equation {{math|''x''<sup>2</sup> + ''a'' {{=}} 0}}. On the other hand, the polynomial {{math|''x''<sup>2</sup> + ''ax'' + 1}} is irreducible over {{math|''F''<sub>4</sub>}}, but it splits over {{math|''F''<sub>16</sub>}}, where it has the two roots {{math|''ab''}} and {{math|''ab'' + ''a''}}, where {{math|''b''}} is a root of {{math|''x''<sup>2</sup> + ''x'' + ''a''}} in {{math|''F''<sub>16</sub>}}. This is a special case of [[Artin–Schreier theory]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)