Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reed–Solomon error correction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Syndrome decoding==== The decoder starts by evaluating the polynomial as received at points <math>\alpha^1 \dots \alpha^{n-k}</math>. We call the results of that evaluation the "syndromes" ''S''<sub>''j''</sub>. They are defined as <math display="block"> \begin{align} S_j &= r(\alpha^j) = s(\alpha^j) + e(\alpha^j) = 0 + e(\alpha^j) \\ &= e(\alpha^j) \\ &= \sum_{k=1}^\nu e_{i_k} {(\alpha^j)}^{i_k}, \quad j = 1, 2, \ldots, n - k. \end{align} </math> Note that <math>s(\alpha^j) = 0</math> because <math>s(x)</math> has roots at <math>\alpha^j</math>, as shown in the previous section. The advantage of looking at the syndromes is that the message polynomial drops out. In other words, the syndromes only relate to the error and are unaffected by the actual contents of the message being transmitted. If the syndromes are all zero, the algorithm stops here and reports that the message was not corrupted in transit.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)