Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Root system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Explicit construction of the irreducible root systems== ===''A''<sub>''n''</sub>=== [[File:A3vzome.jpg|class=skin-invert-image|thumb|Model of the <math>A_3</math> root system in the Zometool system]] {| class=wikitable |+ Simple roots in ''A''<sub>3</sub> |- ! ||e<sub>1</sub>||e<sub>2</sub>||e<sub>3</sub>||e<sub>4</sub> |- ! α<sub>1</sub> |1||−1||0||0 |- ! α<sub>2</sub> |0||1||−1||0 |- ! α<sub>3</sub> ||0||0||1||−1 |- BGCOLOR="#ddd" |colspan=5 align=center|{{Dynkin2|node_n1|3|node_n2|3|node_n3}} |} Let ''E'' be the subspace of '''R'''<sup>''n''+1</sup> for which the coordinates sum to 0, and let Φ be the set of vectors in ''E'' of length {{radic|2}} and which are ''integer vectors,'' i.e. have integer coordinates in '''R'''<sup>''n''+1</sup>. Such a vector must have all but two coordinates equal to 0, one coordinate equal to 1, and one equal to −1, so there are ''n''<sup>2</sup> + ''n'' roots in all. One choice of simple roots expressed in the [[standard basis]] is {{math|1='''α'''<sub>''i''</sub> = '''e'''<sub>''i''</sub> − '''e'''<sub>''i''+1</sub>}} for {{math|1 ≤ ''i'' ≤ ''n''}}. The [[Reflection (mathematics)|reflection]] ''σ''<sub>''i''</sub> through the [[hyperplane]] perpendicular to '''α'''<sub>''i''</sub> is the same as [[permutation]] of the adjacent ''i''th and (''i'' + 1)th [[coordinates]]. Such [[Transposition (mathematics)|transpositions]] generate the full [[permutation group]]. For adjacent simple roots, ''σ''<sub>''i''</sub>('''α'''<sub>''i''+1</sub>) = '''α'''<sub>''i''+1</sub> + '''α'''<sub>''i''</sub> = ''σ''<sub>''i''+1</sub>('''α'''<sub>''i''</sub>) = '''α'''<sub>''i''</sub> + '''α'''<sub>''i''+1</sub>, that is, reflection is equivalent to adding a multiple of 1; but reflection of a simple root perpendicular to a nonadjacent simple root leaves it unchanged, differing by a multiple of 0. The ''A''<sub>''n''</sub> root lattice – that is, the lattice generated by the ''A''<sub>''n''</sub> roots – is most easily described as the set of integer vectors in '''R'''<sup>''n''+1</sup> whose components sum to zero. The ''A''<sub>2</sub> root lattice is the [[vertex arrangement]] of the [[triangular tiling]]. The ''A''<sub>3</sub> root lattice is known to crystallographers as the [[cubic crystal system|face-centered cubic]] (or [[Close-packing of equal spheres|cubic close packed]]) lattice.<ref>{{cite book |author1-link=John Horton Conway |first1=John |last1=Conway |author2-link=Neil Sloane |first2=Neil J.A. |last2=Sloane |title=Sphere Packings, Lattices and Groups |url=https://books.google.com/books?id=upYwZ6cQumoC |date=1998 |publisher=Springer |isbn=978-0-387-98585-5 |chapter=Section 6.3}}</ref> It is the vertex arrangement of the [[tetrahedral-octahedral honeycomb]]. The ''A''<sub>3</sub> root system (as well as the other rank-three root systems) may be modeled in the [[Zome|Zometool construction set]].<ref>{{harvnb|Hall|2015}} Section 8.9</ref> In general, the ''A''<sub>''n''</sub> root lattice is the vertex arrangement of the ''n''-dimensional [[simplicial honeycomb]]. {{Clear}} ===''B''<sub>''n''</sub>=== {| class=wikitable |+ Simple roots in ''B''<sub>4</sub> |- ! ||e<sub>1</sub>||e<sub>2</sub>||e<sub>3</sub>||e<sub>4</sub> |- !α<sub>1</sub> | 1||−1||0||0 |- !α<sub>2</sub> |0|| 1||−1||0 |- !α<sub>3</sub> |0||0|| 1||−1 |- !α<sub>4</sub> |0||0|| 0|| 1 |- BGCOLOR="#ddd" |colspan=5 align=center|{{Dynkin2|node_n1|3|node_n2|3|node_n3|4b|nodeg_n4}} |} Let ''E'' = '''R'''<sup>''n''</sup>, and let Φ consist of all integer vectors in ''E'' of length 1 or {{radic|2}}. The total number of roots is 2''n''<sup>2</sup>. One choice of simple roots is {{math|1='''α'''<sub>''i''</sub> = '''e'''<sub>''i''</sub> – '''e'''<sub>''i''+1</sub>}} for {{math|1 ≤ ''i'' ≤ ''n'' – 1}} (the above choice of simple roots for ''A''<sub>''n''−1</sub>), and the shorter root {{math|1='''α'''<sub>''n''</sub> = '''e'''<sub>''n''</sub>}}. The reflection ''σ''<sub>''n''</sub> through the hyperplane perpendicular to the short root '''α'''<sub>''n''</sub> is of course simply negation of the ''n''th coordinate. For the long simple root '''α'''<sub>''n''−1</sub>, σ<sub>''n''−1</sub>('''α'''<sub>''n''</sub>) = '''α'''<sub>''n''</sub> + '''α'''<sub>''n''−1</sub>, but for reflection perpendicular to the short root, ''σ''<sub>''n''</sub>('''α'''<sub>''n''−1</sub>) = '''α'''<sub>''n''−1</sub> + 2'''α'''<sub>''n''</sub>, a difference by a multiple of 2 instead of 1. The ''B''<sub>''n''</sub> root lattice—that is, the lattice generated by the ''B''<sub>''n''</sub> roots—consists of all integer vectors. ''B''<sub>1</sub> is isomorphic to ''A''<sub>1</sub> via scaling by {{radic|2}}, and is therefore not a distinct root system. {{Clear}} ===''C''<sub>''n''</sub>=== [[File:Root vectors b3 c3-d3.png|class=skin-invert-image|320px|thumb|Root system ''B''<sub>3</sub>, ''C''<sub>3</sub>, and ''A''<sub>3</sub> = ''D''<sub>3</sub> as points within a [[cube]] and [[octahedron]]]] {| class=wikitable |+ Simple roots in ''C''<sub>4</sub> |- ! ||e<sub>1</sub>||e<sub>2</sub>||e<sub>3</sub>||e<sub>4</sub> |- !α<sub>1</sub> | 1||−1||0||0 |- !α<sub>2</sub> |0|| 1||−1||0 |- !α<sub>3</sub> |0||0|| 1||−1 |- !α<sub>4</sub> |0||0|| 0|| 2 |- BGCOLOR="#ddd" |colspan=5 align=center|{{Dynkin2|nodeg_n1|3|nodeg_n2|3|nodeg_n3|4a|node_n4}} |} Let ''E'' = '''R'''<sup>''n''</sup>, and let Φ consist of all integer vectors in ''E'' of length {{radic|2}} together with all vectors of the form 2''λ'', where ''λ'' is an integer vector of length 1. The total number of roots is 2''n''<sup>2</sup>. One choice of simple roots is: '''α'''<sub>''i''</sub> = '''e'''<sub>''i''</sub> − '''e'''<sub>''i''+1</sub>, for 1 ≤ ''i'' ≤ ''n'' − 1 (the above choice of simple roots for ''A''<sub>''n''−1</sub>), and the longer root '''α'''<sub>''n''</sub> = 2'''e'''<sub>''n''</sub>. The reflection ''σ''<sub>''n''</sub>('''α'''<sub>''n''−1</sub>) = '''α'''<sub>''n''−1</sub> + '''α'''<sub>''n''</sub>, but ''σ''<sub>''n''−1</sub>('''α'''<sub>''n''</sub>) = '''α'''<sub>''n''</sub> + 2'''α'''<sub>''n''−1</sub>. The ''C''<sub>''n''</sub> root lattice—that is, the lattice generated by the ''C''<sub>''n''</sub> roots—consists of all integer vectors whose components sum to an even integer. ''C''<sub>2</sub> is isomorphic to ''B''<sub>2</sub> via scaling by {{radic|2}} and a 45 degree rotation, and is therefore not a distinct root system. {{Clear}} ===''D''<sub>''n''</sub>=== {| class=wikitable |+ Simple roots in ''D''<sub>4</sub> |- ! ||e<sub>1</sub>||e<sub>2</sub>||e<sub>3</sub>||e<sub>4</sub> |- valign=top !α<sub>1</sub> | 1||−1||0||0 |- !α<sub>2</sub> |0|| 1||−1||0 |- !α<sub>3</sub> |0||0|| 1||−1 |- !α<sub>4</sub> |0||0|| 1|| 1 |- BGCOLOR="#ddd" |colspan=5 align=center|[[File:DynkinD4 labeled.png|80px]]<!--{{Dynkin2|node_n1|3|branch|3|node_n3}}--> |} Let {{math|1=''E'' = '''R'''<sup>''n''</sup>}}, and let Φ consist of all integer vectors in ''E'' of length {{radic|2}}. The total number of roots is {{math|2''n''(''n'' − 1)}}. One choice of simple roots is {{math|1='''α'''<sub>''i''</sub> = '''e'''<sub>''i''</sub> − '''e'''<sub>''i''+1</sub>}} for {{math|1 ≤ ''i'' ≤ ''n'' − 1}} (the above choice of simple roots for {{math|''A''<sub>''n''−1</sub>}}) together with {{math|1='''α'''<sub>''n''</sub> = '''e'''<sub>''n''−1</sub> + '''e'''<sub>''n''</sub>}}. Reflection through the hyperplane perpendicular to '''α'''<sub>''n''</sub> is the same as [[Transposition (mathematics)|transposing]] and negating the adjacent ''n''-th and (''n'' − 1)-th coordinates. Any simple root and its reflection perpendicular to another simple root differ by a multiple of 0 or 1 of the second root, not by any greater multiple. The ''D''<sub>''n''</sub> root lattice – that is, the lattice generated by the ''D''<sub>''n''</sub> roots – consists of all integer vectors whose components sum to an even integer. This is the same as the ''C''<sub>''n''</sub> root lattice. The ''D''<sub>''n''</sub> roots are expressed as the vertices of a [[Rectification_(geometry) | rectified]] ''n''-[[orthoplex]], [[Coxeter–Dynkin diagram]]: {{CDD|node|3|node_1|3}}...{{CDD|3|node|split1|nodes}}. The {{math|2''n''(''n'' − 1)}} vertices exist in the middle of the edges of the ''n''-orthoplex. ''D''<sub>3</sub> coincides with ''A''<sub>3</sub>, and is therefore not a distinct root system. The twelve ''D''<sub>3</sub> root vectors are expressed as the vertices of {{CDD|node|split1|nodes_11}}, a lower symmetry construction of the [[cuboctahedron]]. ''D''<sub>4</sub> has additional symmetry called [[triality]]. The twenty-four ''D''<sub>4</sub> root vectors are expressed as the vertices of {{CDD|node|3|node_1|split1|nodes}}, a lower symmetry construction of the [[24-cell]]. {{Clear}} ===''E''<sub>6</sub>, ''E''<sub>7</sub>, ''E''<sub>8</sub>=== {| class=wikitable width=675 center |[[File:E6Coxeter.svg|200px]]<BR>72 vertices of [[1 22 polytope|1<sub>22</sub>]] represent the root vectors of [[E6 (mathematics)|''E''<sub>6</sub>]]<BR>(Green nodes are doubled in this E6 Coxeter plane projection) |[[File:E7Petrie.svg|225px]]<BR>126 vertices of [[2 31 polytope|2<sub>31</sub>]] represent the root vectors of [[E7 (mathematics)|''E''<sub>7</sub>]] |[[File:E8 graph.svg|250px]]<BR>240 vertices of [[4 21 polytope|4<sub>21</sub>]] represent the root vectors of [[E8 (mathematics)|''E''<sub>8</sub>]] |- align=center |[[File:DynkinE6AltOrder.svg|200px]] |[[File:DynkinE7AltOrder.svg|225px]] |[[File:DynkinE8AltOrder.svg|250px]] |} *The ''E''<sub>8</sub> root system is any set of vectors in '''R'''<sup>8</sup> that is [[congruence (geometry)|congruent]] to the following set:<math display=block> D_8 \cup \left\{ \frac 1 2 \left( \sum_{i=1}^8 \varepsilon_i \mathbf e_i \right) : \varepsilon_i = \pm1, \, \varepsilon_1 \cdots \varepsilon_8 = +1 \right\}. </math> The root system has 240 roots. The set just listed is the set of vectors of length {{radic|2}} in the E8 root lattice, also known simply as the [[E8 lattice]] or Γ<sub>8</sub>. This is the set of points in '''R'''<sup>8</sup> such that: # all the coordinates are [[integer]]s or all the coordinates are [[half-integer]]s (a mixture of integers and half-integers is not allowed), and # the sum of the eight coordinates is an [[even integer]]. Thus, <math display=block> E_8 = \left\{ \alpha\in\mathbb Z^8 \cup \left(\mathbb Z + \tfrac 1 2\right)^8 : |\alpha|^2 = \sum\alpha_i^2 = 2,\, \sum\alpha_i \in 2\mathbb Z. \right\} </math> * The root system ''E''<sub>7</sub> is the set of vectors in ''E''<sub>8</sub> that are perpendicular to a fixed root in ''E''<sub>8</sub>. The root system ''E''<sub>7</sub> has 126 roots. * The root system ''E''<sub>6</sub> is not the set of vectors in ''E''<sub>7</sub> that are perpendicular to a fixed root in ''E''<sub>7</sub>, indeed, one obtains ''D''<sub>6</sub> that way. However, ''E''<sub>6</sub> is the subsystem of ''E''<sub>8</sub> perpendicular to two suitably chosen roots of ''E''<sub>8</sub>. The root system ''E''<sub>6</sub> has 72 roots. {| style="text-align: right; border: 1px gray solid" cellspacing=0 |+ '''Simple roots in ''E''<sub>8</sub>: even coordinates''' |- | 1||−1||0||0||0||0||0||0 |- |0|| 1||−1||0||0||0||0||0 |- |0||0|| 1||−1||0||0||0||0 |- |0||0||0|| 1||−1||0||0||0 |- | 0||0||0||0|| 1||−1||0||0 |- |0||0||0||0||0|| 1||−1||0 |- |0||0||0||0||0||1|| 1||0 |- | −{{sfrac|1|2}} ||−{{sfrac|1|2}} ||−{{sfrac|1|2}} ||−{{sfrac|1|2}} ||−{{sfrac|1|2}} ||−{{sfrac|1|2}} ||−{{sfrac|1|2}} ||−{{sfrac|1|2}} |} An alternative description of the ''E''<sub>8</sub> lattice which is sometimes convenient is as the set Γ'<sub>8</sub> of all points in '''R'''<sup>8</sup> such that *all the coordinates are integers and the sum of the coordinates is even, or *all the coordinates are half-integers and the sum of the coordinates is odd. The lattices Γ<sub>8</sub> and Γ'<sub>8</sub> are [[isomorphic]]; one may pass from one to the other by changing the signs of any odd number of coordinates. The lattice Γ<sub>8</sub> is sometimes called the ''even coordinate system'' for ''E''<sub>8</sub> while the lattice Γ'<sub>8</sub> is called the ''odd coordinate system''. One choice of simple roots for ''E''<sub>8</sub> in the even coordinate system with rows ordered by node order in the alternate (non-canonical) Dynkin diagrams (above) is: :'''''α'''''<sub>''i''</sub> = '''e'''<sub>''i''</sub> − '''e'''<sub>''i''+1</sub>, for 1 ≤ ''i'' ≤ 6, and :'''''α'''''<sub>7</sub> = '''e'''<sub>7</sub> + '''e'''<sub>6</sub> (the above choice of simple roots for ''D''<sub>7</sub>) along with <math display=block> \boldsymbol\alpha_8 = \boldsymbol\beta_0 = -\frac{1}{2} \sum_{i=1}^8\mathbf{e}_i = (-1/2,-1/2,-1/2,-1/2,-1/2,-1/2,-1/2,-1/2).</math> {| style="text-align: right; border: 1px gray solid" cellspacing=0 |+ '''Simple roots in ''E''<sub>8</sub>: odd coordinates''' |- | 1||−1||0||0||0||0||0||0 |- |0|| 1||−1||0||0||0||0||0 |- |0||0|| 1||−1||0||0||0||0 |- |0||0||0|| 1||−1||0||0||0 |- | 0||0||0||0|| 1||−1||0||0 |- |0||0||0||0||0|| 1||−1||0 |- |0||0||0||0||0||0|| 1||−1 |- | −{{sfrac|1|2}} ||−{{sfrac|1|2}} ||−{{sfrac|1|2}} ||−{{sfrac|1|2}} ||−{{sfrac|1|2}} || {{sfrac|1|2}} || {{sfrac|1|2}} || {{sfrac|1|2}} |} One choice of simple roots for ''E''<sub>8</sub> in the odd coordinate system with rows ordered by node order in alternate (non-canonical) Dynkin diagrams (above) is :'''''α'''''<sub>''i''</sub> = '''e'''<sub>''i''</sub> − '''e'''<sub>''i''+1</sub>, for 1 ≤ ''i'' ≤ 7 (the above choice of simple roots for ''A''<sub>7</sub>) along with :'''''α'''''<sub>8</sub> = '''''β'''''<sub>5</sub>, where :<math display="inline">\boldsymbol\beta_j = \frac{1}{2} \left(- \sum_{i=1}^j e_i + \sum_{i=j+1}^8 e_i\right).</math> (Using '''''β'''''<sub>3</sub> would give an isomorphic result. Using '''''β'''''<sub>1,7</sub> or '''''β'''''<sub>2,6</sub> would simply give ''A''<sub>8</sub> or ''D''<sub>8</sub>. As for '''''β'''''<sub>4</sub>, its coordinates sum to 0, and the same is true for '''''α'''''<sub>1...7</sub>, so they span only the 7-dimensional subspace for which the coordinates sum to 0; in fact −2'''''β'''''<sub>4</sub> has coordinates (1,2,3,4,3,2,1) in the basis ('''''α'''''<sub>''i''</sub>).) Since perpendicularity to '''''α'''''<sub>1</sub> means that the first two coordinates are equal, ''E''<sub>7</sub> is then the subset of ''E''<sub>8</sub> where the first two coordinates are equal, and similarly ''E''<sub>6</sub> is the subset of ''E''<sub>8</sub> where the first three coordinates are equal. This facilitates explicit definitions of ''E''<sub>7</sub> and ''E''<sub>6</sub> as :{{math|1=''E''<sub>7</sub> = {'''''α''''' ∈ '''Z'''<sup>7</sup> ∪ ('''Z'''+1/2)<sup>7</sup>''' : ''' Σ'''''α'''''<sub>''i''</sub><sup>2</sup> + '''''α'''''<sub>1</sub><sup>2</sup> = 2, Σ'''''α'''''<sub>''i''</sub> + '''''α'''''<sub>1</sub> ∈ 2'''Z'''},}} :{{math|1=''E''<sub>6</sub> = {'''''α''''' ∈ '''Z'''<sup>6</sup> ∪ ('''Z'''+1/2)<sup>6</sup>''' : ''' Σ'''''α'''''<sub>''i''</sub><sup>2</sup> + 2'''''α'''''<sub>1</sub><sup>2</sup> = 2, Σ'''''α'''''<sub>''i''</sub> + 2'''''α'''''<sub>1</sub> ∈ 2'''Z'''} }} Note that deleting '''''α'''''<sub>1</sub> and then '''''α'''''<sub>2</sub> gives sets of simple roots for ''E''<sub>7</sub> and ''E''<sub>6</sub>. However, these sets of simple roots are in different ''E''<sub>7</sub> and ''E''<sub>6</sub> subspaces of ''E''<sub>8</sub> than the ones written above, since they are not orthogonal to '''''α'''''<sub>1</sub> or '''''α'''''<sub>2</sub>. ===''F''<sub>4</sub>=== {| class=wikitable |+ Simple roots in ''F''<sub>4</sub> |- ! ||e<sub>1</sub>||e<sub>2</sub>||e<sub>3</sub>||e<sub>4</sub> |- !α<sub>1</sub> | 1||−1||0||0 |- !α<sub>2</sub> |0|| 1||−1||0 |- !α<sub>3</sub> |0||0|| 1||0 |- !α<sub>4</sub> | −{{sfrac|1|2}} ||−{{sfrac|1|2}} ||−{{sfrac|1|2}} ||−{{sfrac|1|2}} |- BGCOLOR="#ddd" |colspan=5 align=center|{{Dynkin2|node_n1|3|node_n2|4b|nodeg_n3|3|nodeg_n4}} |} [[File:F4 roots by 24-cell duals.svg|100px|thumb|48-root vectors of F4, defined by vertices of the [[24-cell]] and its dual, viewed in the [[Coxeter plane]]]] For ''F''<sub>4</sub>, let ''E'' = '''R'''<sup>4</sup>, and let Φ denote the set of vectors α of length 1 or {{radic|2}} such that the coordinates of 2α are all integers and are either all even or all odd. There are 48 roots in this system. One choice of simple roots is: the choice of simple roots given above for ''B''<sub>3</sub>, plus <math display="inline">\boldsymbol\alpha_4 = -\frac{1}{2} \sum_{i=1}^4 e_i</math>. <!-- \left ( \begin{smallmatrix} +1&-1&0&0 \\ 0&+1&-1&0 \\ 0&0&+1&0 \\ -\frac{1}{2}&-\frac{1}{2}&-\frac{1}{2}&-\frac{1}{2} \end{smallmatrix} \right ) --> The ''F''<sub>4</sub> root lattice—that is, the lattice generated by the ''F''<sub>4</sub> root system—is the set of points in '''R'''<sup>4</sup> such that either all the coordinates are [[integer]]s or all the coordinates are [[half-integer]]s (a mixture of integers and half-integers is not allowed). This lattice is isomorphic to the lattice of [[Hurwitz quaternions]]. {{Clear}} ===''G''<sub>2</sub>=== {| class=wikitable width=130 |+ Simple roots in ''G''<sub>2</sub> |- ! ||e<sub>1</sub>||e<sub>2</sub>||e<sub>3</sub> |- !α<sub>1</sub> | 1|| −1|| 0 |- !β | −1||2||−1 |- BGCOLOR="#ddd" |colspan=4 align=center|{{Dynkin2|nodeg_n1|6a|node_n2}} |} The root system ''G''<sub>2</sub> has 12 roots, which form the vertices of a [[hexagram]]. See the picture [[Root system#Rank two examples|above]]. One choice of simple roots is ('''α'''<sub>1</sub>, '''β''' = '''α'''<sub>2</sub> − '''α'''<sub>1</sub>) where '''α'''<sub>''i''</sub> = '''e'''<sub>''i''</sub> − '''e'''<sub>''i''+1</sub> for ''i'' = 1, 2 is the above choice of simple roots for ''A''<sub>2</sub>. The ''G''<sub>2</sub> root lattice—that is, the lattice generated by the ''G''<sub>2</sub> roots—is the same as the ''A''<sub>2</sub> root lattice. {{Clear}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)