Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
S-matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== In states expressed as out states ==== The initial states can be expanded in a basis of final states (or vice versa). Using the completeness relation, <math display="block">\Psi_\alpha^- = \int d\beta (\Psi_\beta^+,\Psi_\alpha^-)\Psi_\beta^+ = \int d\beta |\Psi_\beta^+\rangle\langle\Psi_\beta^+|\Psi_\alpha^-\rangle = \sum_{n_1\sigma_1n_2\sigma_2\cdots} \int d^3p_1d^3p_2\cdots(\Psi_\beta^+,\Psi_\alpha^-)\Psi_\beta^+ ,</math> <math display="block">\Psi_\alpha^- = \left| \mathrm{i}, k_1\ldots k_n \right\rangle = C_0 \left| \mathrm{f}, 0\right\rangle\ + \sum_{m=1}^\infty \int{d^4p_1\ldots d^4p_mC_m(p_1\ldots p_m)\left| \mathrm{f}, p_1\ldots p_m \right\rangle} ~,</math> where {{math|{{!}}''C''<sub>''m''</sub>{{!}}<sup>2</sup>}} is the probability that the interaction transforms <math display="block">\left| \mathrm{i}, k_1\ldots k_n \right\rangle = \Psi_\alpha^-</math> into <math display="block">\left| \mathrm{f}, p_1\ldots p_m \right\rangle = \Psi_\beta^+ .</math> By the ordinary rules of quantum mechanics, <math display="block">C_m(p_1\ldots p_m) = \left\langle \mathrm{f}, p_1\ldots p_m \right|\mathrm{i}, k_1\ldots k_n \rangle = (\Psi_\beta^+,\Psi_\alpha^-)</math> and one may write <math display="block">\left| \mathrm{i}, k_1\ldots k_n \right\rangle = C_0 \left| \mathrm{f}, 0\right\rangle\ + \sum_{m=1}^\infty \int{d^4p_1\ldots d^4p_m \left| \mathrm{f}, p_1\ldots p_m \right\rangle}\left\langle \mathrm{f}, p_1\ldots p_m \right|\mathrm{i}, k_1\ldots k_n \rangle ~.</math> The expansion coefficients are precisely the ''S''-matrix elements to be defined below.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)