Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Scale-invariant feature transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Object recognition using SIFT features === Given SIFT's ability to find distinctive keypoints that are invariant to location, scale and rotation, and robust to [[affine transformation]]s (changes in [[Linear scale|scale]], [[rotation]], [[Shear mapping|shear]], and position) and changes in illumination, they are usable for object recognition. The steps are given below. * First, SIFT features are obtained from the input image using the algorithm described above. * These features are matched to the SIFT feature database obtained from the training images. This feature matching is done through a Euclidean-distance based nearest neighbor approach. To increase robustness, matches are rejected for those keypoints for which the ratio of the nearest neighbor distance to the second-nearest neighbor distance is greater than 0.8. This discards many of the false matches arising from background clutter. Finally, to avoid the expensive search required for finding the Euclidean-distance-based nearest neighbor, an approximate algorithm called the best-bin-first algorithm is used.<ref name=Beis1997 /> This is a fast method for returning the nearest neighbor with high probability, and can give speedup by factor of 1000 while finding nearest neighbor (of interest) 95% of the time. * Although the distance ratio test described above discards many of the false matches arising from background clutter, we still have matches that belong to different objects. Therefore, to increase robustness to object identification, we want to cluster those features that belong to the same object and reject the matches that are left out in the clustering process. This is done using the [[Hough transform]]. This will identify clusters of features that vote for the same object pose. When clusters of features are found to vote for the same pose of an object, the probability of the interpretation being correct is much higher than for any single feature. Each keypoint votes for the set of object poses that are consistent with the keypoint's location, scale, and orientation. ''Bins'' that accumulate at least 3 votes are identified as candidate object/pose matches. * For each candidate cluster, a least-squares solution for the best estimated affine projection parameters relating the training image to the input image is obtained. If the projection of a keypoint through these parameters lies within half the error range that was used for the parameters in the Hough transform bins, the keypoint match is kept. If fewer than 3 points remain after discarding outliers for a bin, then the object match is rejected. The least-squares fitting is repeated until no more rejections take place. This works better for planar surface recognition than 3D object recognition since the affine model is no longer accurate for 3D objects. * In this journal,<ref name="Sirmacek2009" /> authors proposed a new approach to use SIFT descriptors for multiple object detection purposes. The proposed multiple object detection approach is tested on aerial and satellite images. SIFT features can essentially be applied to any task that requires identification of matching locations between images. Work has been done on applications such as recognition of particular object categories in 2D images, 3D reconstruction, motion tracking and segmentation, robot localization, image panorama stitching and [[Epipolar geometry|epipolar]] calibration. Some of these are discussed in more detail below.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)