Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Simple Lie group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Simple Lie groups of small dimension== The following table lists some Lie groups with simple Lie algebras of small dimension. The groups on a given line all have the same Lie algebra. In the dimension 1 case, the groups are abelian and not simple. {| class="wikitable sortable" |- !Dim !Groups ! !Symmetric space !Compact dual !Rank !Dim |- |1 |{{mathbb|R}}, ''S''<sup>1</sup> = U(1) = SO<sub>2</sub>({{mathbb|R}}) = Spin(2) |Abelian |Real line | |0 |1 |- |3 | ''S''<sup>3</sup> = Sp(1) = SU(2)=Spin(3), SO<sub>3</sub>({{mathbb|R}}) = PSU(2) |Compact | | | | |- |3 |SL<sub>2</sub>({{mathbb|R}}) = Sp<sub>2</sub>({{mathbb|R}}), SO<sub>2,1</sub>({{mathbb|R}}) |Split, Hermitian, hyperbolic |Hyperbolic plane <math>\mathbb{H}^2</math> |Sphere ''S''<sup>2</sup> |1 |2 |- |6 |SL<sub>2</sub>({{mathbb|C}}) = Sp<sub>2</sub>({{mathbb|C}}), SO<sub>3,1</sub>({{mathbb|R}}), SO<sub>3</sub>({{mathbb|C}}) |Complex |Hyperbolic space <math>\mathbb{H}^3</math> |Sphere ''S''<sup>3</sup> |1 |3 |- |8 |SL<sub>3</sub>({{mathbb|R}}) |Split |Euclidean structures on <math>\mathbb{R}^3</math> |Real structures on <math>\mathbb{C}^3</math> |2 |5 |- |8 |SU(3) |Compact | | | | |- |8 |SU(1,2) |Hermitian, quasi-split, quaternionic |Complex hyperbolic plane |Complex projective plane |1 |4 |- |10 |Sp(2) = Spin(5), SO<sub>5</sub>({{mathbb|R}}) |Compact | | | | |- |10 |SO<sub>4,1</sub>({{mathbb|R}}), Sp<sub>2,2</sub>({{mathbb|R}}) |Hyperbolic, quaternionic |Hyperbolic space <math>\mathbb{H}^4</math> |Sphere ''S''<sup>4</sup> |1 |4 |- |10 |SO<sub>3,2</sub>({{mathbb|R}}), Sp<sub>4</sub>({{mathbb|R}}) |Split, Hermitian |Siegel upper half space |Complex structures on <math>\mathbb{H}^2</math> |2 |6 |- |14 |''G''<sub>2</sub> |Compact | | | | |- |14 |''G''<sub>2</sub> |Split, quaternionic |Non-division quaternionic subalgebras of non-division octonions |Quaternionic subalgebras of octonions |2 |8 |- |15 |SU(4) = Spin(6), SO<sub>6</sub>({{mathbb|R}}) |Compact | | |- |15 |SL<sub>4</sub>({{mathbb|R}}), SO<sub>3,3</sub>({{mathbb|R}}) |Split |{{mathbb|R}}<sup>3</sup> in {{mathbb|R}}<sup>3,3</sup> |Grassmannian ''G''(3,3) |3 |9 |- |15 |SU(3,1), SO*(6) |Hermitian |Complex hyperbolic space |Complex projective space |1 |6 |- |15 |SU(2,2), SO<sub>4,2</sub>({{mathbb|R}}) |Hermitian, quasi-split, quaternionic |{{mathbb|R}}<sup>2</sup> in {{mathbb|R}}<sup>2,4</sup> |Grassmannian ''G''(2,4) |2 |8 |- |15 |SL<sub>2</sub>({{mathbb|H}}), SO<sub>5,1</sub>({{mathbb|R}}) |Hyperbolic |Hyperbolic space <math>\mathbb{H}^5</math> |Sphere ''S''<sup>5</sup> |1 |5 |- |16 |SL<sub>3</sub>({{mathbb|C}}) |Complex | |SU(3) |2 |8 |- |20 |SO<sub>5</sub>({{mathbb|C}}), Sp<sub>4</sub>({{mathbb|C}}) |Complex | |Spin<sub>5</sub>({{mathbb|R}}) |2 |10 |- |21 |SO<sub>7</sub>({{mathbb|R}}) |Compact | | |- |21 |SO<sub>6,1</sub>({{mathbb|R}}) |Hyperbolic |Hyperbolic space <math>\mathbb{H}^6</math> |Sphere ''S''<sup>6</sup> |- |21 |SO<sub>5,2</sub>({{mathbb|R}}) |Hermitian | | |- |21 |SO<sub>4,3</sub>({{mathbb|R}}) |Split, quaternionic | | |- |21 |Sp(3) |Compact | | |- |21 |Sp<sub>6</sub>({{mathbb|R}}) |Split, hermitian | | |- |21 |Sp<sub>4,2</sub>({{mathbb|R}}) |Quaternionic | | |- |24 |SU(5) |Compact | | |- |24 |SL<sub>5</sub>({{mathbb|R}}) |Split | | |- |24 |SU<sub>4,1</sub> |Hermitian | | |- |24 |SU<sub>3,2</sub> |Hermitian, quaternionic | | |- |28 |SO<sub>8</sub>({{mathbb|R}}) |Compact | | |- |28 |SO<sub>7,1</sub>({{mathbb|R}}) |Hyperbolic |Hyperbolic space <math>\mathbb{H}^7</math> |Sphere ''S''<sup>7</sup> |- |28 |SO<sub>6,2</sub>({{mathbb|R}}), SO<sup>β</sup><sub>8</sub>({{mathbb|R}}) |Hermitian | | |- |28 |SO<sub>5,3</sub>({{mathbb|R}}) |Quasi-split | | |- |28 |SO<sub>4,4</sub>({{mathbb|R}}) |Split, quaternionic | | |- |28 |''G''<sub>2</sub>({{mathbb|C}}) |Complex | | |- |30 |SL<sub>4</sub>({{mathbb|C}}) |Complex | | <!-- to do: 24, 28, 30, 35, 36, 42, 45, 48, 52, 55, 56, 63, 66, 70, 72, 78, 80, 90, 91, 96, 99, 104--> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)