Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uniform continuity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Further reading == * {{cite book |author-link=Nicolas Bourbaki |first=Nicolas |last=Bourbaki |title=General Topology: Chapters 1–4 |date=1989 |publisher=Springer |trans-title=Topologie Générale |isbn=0-387-19374-X}} Chapter II is a comprehensive reference of uniform spaces. * {{cite book |first=Jean |last=Dieudonné |author-link=Jean Dieudonné |title=Foundations of Modern Analysis |publisher=Academic Press |year=1960}} * {{cite book |first=Patrick |last=Fitzpatrick |title=Advanced Calculus |publisher=Brooks/Cole |year=2006 |isbn=0-534-92612-6}} * {{cite book |first=John L. |last=Kelley |title=General topology |year=1955 |publisher=Springer-Verlag |series=Graduate Texts in Mathematics |isbn=0-387-90125-6}} * {{SpringerEOM|title=Uniform continuity|id=Uniform_continuity&oldid=12797|last=Kudryavtsev|first=L.D.}} * {{cite book |last=Rudin |first=Walter |author-link=Walter Rudin |title=Principles of Mathematical Analysis |url=https://archive.org/details/principlesofmath00rudi |url-access=registration |publisher=[[McGraw-Hill]] |location=New York |isbn=978-0-07-054235-8 |year=1976}} *{{citation|last1=Rusnock|first1=P.|last2=Kerr-Lawson|first2=A.|title=Bolzano and uniform continuity|journal=Historia Mathematica|volume=32|year=2005|pages=303–311|number=3|doi=10.1016/j.hm.2004.11.003|doi-access=}} {{Metric spaces}} [[Category:Calculus]] [[Category:General topology]] [[Category:Mathematical analysis]] [[Category:Theory of continuous functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)