Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
WKB approximation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Quantum Tunneling === {{Main|Quantum tunnelling}} The potential of such systems can be given in the form: <math display="block">V(x) = \begin{cases} 0 & \text{if } x < x_1 \\ V(x) & \text{if } x_2 \geq x \geq x_1\\ 0 & \text{if } x > x_2 \\ \end{cases} </math> where <math display="inline">x_1 < x_2 </math>. Its solutions for an incident wave is given as <math display="block">\psi(x) = \begin{cases} A \exp({ i p_0 x \over \hbar} ) + B \exp({- i p_0 x \over \hbar}) & \text{if } x < x_1 \\ \frac{C}{\sqrt{|p(x)|}}\exp{(-\frac 1 \hbar \int_{x_1}^{x} |p(x)| dx )} & \text{if } x_2 \geq x \geq x_1\\ D \exp({ i p_0 x \over \hbar} ) & \text{if } x > x_2 \\ \end{cases} </math> where the wavefunction in the classically forbidden region is the WKB approximation but neglecting the growing exponential. This is a fair assumption for wide potential barriers through which the wavefunction is not expected to grow to high magnitudes. By the requirement of continuity of wavefunction and its derivatives, the following relation can be shown:<math display="block">\frac {|D|^2} {|A|^2} = \frac{4}{(1+{a_1^2}/{p_0^2} )} \frac{a_1}{a_2}\exp\left(-\frac 2 \hbar \int_{x_1}^{x_2} |p(x')| dx'\right) </math> where <math>a_1 = |p(x_1)|</math> and <math>a_2 = |p(x_2)| </math>. Using <math display="inline">\mathbf J(\mathbf x,t) = \frac{i\hbar}{2m}(\psi^* \nabla\psi-\psi\nabla\psi^*) </math> we express the values without signs as: <math display="inline">J_{\text{inc.}} = \frac{\hbar}{2m}(\frac{2p_0}{\hbar}|A|^2) </math> <math display="inline">J_{\text{ref.}} = \frac{\hbar}{2m}(\frac{2p_0}{\hbar}|B|^2) </math> <math display="inline">J_{\text{trans.}} = \frac{\hbar}{2m}(\frac{2p_0}{\hbar}|D|^2) </math> Thus, the [[transmission coefficient]] is found to be: <math display="block">T = \frac {|D|^2} {|A|^2} = \frac{4}{(1+{a_1^2}/{p_0^2} )} \frac{a_1}{a_2}\exp\left(-\frac 2 \hbar \int_{x_1}^{x_2} |p(x')| dx'\right) </math> where <math display="inline">p(x) = \sqrt {2m( E - V(x))} </math>, <math>a_1 = |p(x_1)|</math> and <math>a_2 = |p(x_2)| </math>. The result can be stated as <math display="inline">T \sim ~ e^{-2\gamma} </math> where <math display="inline">\gamma = \int_{x_1}^{x_2} |p(x')| dx' </math>.<ref name=":1" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)