Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Abbe number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Derivation== Starting from the [[Lens#Lensmaker's equation|'''Lensmaker's equation''']] we obtain the [[Lens#Thin lens approximation|'''thin lens''' equation]] by dropping a small term that accounts for lens thickness, <math>\ d\ </math>:<ref>{{Cite book |last=Hecht |first=Eugene |title=Optics |date=2017 |publisher=Pearson |isbn=978-1-292-09693-3 |edition=5 ed/fifth edition, global |location=Boston Columbus Indianapolis New York San Francisco Amsterdam Cape Town Dubai London Madrid Milan Munich}}</ref> :<math> P = \frac{ 1 }{\ f ~} = (n - 1) \Biggl[ \frac{ 1 }{\ R_1\ } - \frac{ 1 }{\ R_2\ } + \frac{\ (n-1)\ d ~}{\ n\ R_1 R_2\ } \Biggr] \approx (n - 1) \left( \frac{ 1 }{\ R_1\ } - \frac{ 1 }{\ R_2\ } \right)\ ,</math> when <math> d \ll \sqrt{\ R_1 R_2\ } ~.</math> The change of [[refractive power]] <math>\ P\ </math> between the two wavelengths <math>\ \lambda_\mathsf{short}\ </math> and <math>\ \lambda_\mathsf{long}\ </math> is given by :<math> \Delta P = P_\mathsf{short} - P_\mathsf{\ \!long} = (n_\mathsf s - n_\mathsf \ell) \left( \frac{ 1 }{\ R_1\ } - \frac{ 1 }{\ R_2\ } \right)\ ,</math> where <math>\ n_\mathsf s\ </math> and <math>\ n_\mathsf \ell\ </math> are the short and long wavelengths' refractive indexes, respectively, and <math>\ n_\mathsf c\ ,</math> below, is for the center. The power difference can be expressed relative to the power at the center wavelength (<math>\ \lambda_\mathsf{center}\ </math>) : <math>\ P_\mathsf c\ = (n_\mathsf c - 1) \left( \frac{ 1 }{\ R_1\ } - \frac{ 1 }{\ R_2\ } \right)\, ;</math> by multiplying and dividing by <math>\ n_\mathsf c - 1\ </math> and regrouping, get :<math> \Delta P = \left( n_\mathsf s - n_\mathsf\ell \right) \left( \frac{\ n_\mathsf c - 1\ }{ n_\mathsf c - 1 } \right) \left( \frac{ 1 }{\ R_1\ } - \frac{ 1 }{\ R_2\ } \right)= \left( \frac{\ \ n_\mathsf s - n_\mathsf\ell\ }{ n_\mathsf c - 1 } \right) P_\mathsf c = \frac{\ P_\mathsf c\ }{ V_\mathsf c } ~.</math> The relative change is [[inversely proportional]] to <math>\ V_\mathsf c\ :</math> :<math> \frac{\ \Delta P\ }{ P_\mathsf c } = \frac{ 1 }{\ V_\mathsf c\ } ~.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)