Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Absolute value
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition and properties== ===Real numbers=== For any {{nowrap|[[real number]] <math>x</math>,}} the '''absolute value''' or '''modulus''' {{nowrap|of <math>x</math>}} is denoted {{nowrap|by <math>|x|</math>}}, with a [[vertical bar]] on each side of the quantity, and is defined as<ref>Mendelson, [https://books.google.com/books?id=A8hAm38zsCMC&pg=PA2 p. 2].</ref> <math display=block>|x| = \begin{cases} x, & \text{if } x \geq 0 \\ -x, & \text{if } x < 0. \end{cases} </math> The absolute value {{nowrap|of <math>x</math>}} is thus always either a [[positive number]] or [[0|zero]], but never [[negative number|negative]]. When <math>x</math> itself is negative {{nowrap|(<math>x < 0</math>),}} then its absolute value is necessarily positive {{nowrap|(<math>|x|=-x>0</math>).}} From an [[analytic geometry]] point of view, the absolute value of a real number is that number's [[distance]] from zero along the [[real number line]], and more generally the absolute value of the difference of two real numbers (their [[absolute difference]]) is the distance between them.<ref>{{cite book|title=Precalculus: A Functional Approach to Graphing and Problem Solving|first=Karl|last=Smith|publisher=Jones & Bartlett Publishers|year=2013|isbn=978-0-7637-5177-7|page=8|url=https://books.google.com/books?id=ZUJbVQN37bIC&pg=PA8}}</ref> The notion of an abstract [[distance function]] in mathematics can be seen to be a generalisation of the absolute value of the difference (see [[#Distance|"Distance"]] below). Since the [[radical symbol|square root symbol]] represents the unique ''positive'' [[square root]], when applied to a positive number, it follows that <math display=block qid=Q120645811>|x| = \sqrt{x^2}.</math> This is equivalent to the definition above, and may be used as an alternative definition of the absolute value of real numbers.<ref>{{Cite book| author=Stewart, James B. | title=Calculus: concepts and contexts | year=2001 | publisher=Brooks/Cole | location=Australia | isbn=0-534-37718-1 | page=A5}}</ref> The absolute value has the following four fundamental properties (<math display="inline">a</math>, <math display="inline">b</math> are real numbers), that are used for generalization of this notion to other domains: {| style="margin-left:1.6em" |- | style="width: 250px" |<math qid=Q120645720>|a| \ge 0 </math> | Non-negativity |- |<math>|a| = 0 \iff a = 0 </math> |Positive-definiteness |- |<math>|ab| = \left|a\right| \left|b\right|</math> |[[Multiplicativeness|Multiplicativity]] |- |<math qid=Q120645947>|a+b| \le |a| + |b| </math> | [[Subadditivity]], specifically the [[triangle inequality]] |} Non-negativity, positive definiteness, and multiplicativity are readily apparent from the definition. To see that subadditivity holds, first note that <math>|a+b|=s(a+b)</math> {{nowrap|where <math>s=\pm 1</math>,}} with its sign chosen to make the result positive. Now, since <math>-1 \cdot x \le |x|</math> {{nowrap|and <math>+1 \cdot x \le |x|</math>,}} it follows that, whichever of <math>\pm1</math> is the value {{nowrap|of <math>s</math>,}} one has <math>s \cdot x\leq |x|</math> for all {{nowrap|real <math>x</math>.}} Consequently, <math>|a+b|=s \cdot (a+b) = s \cdot a + s \cdot b \leq |a| + |b|</math>, as desired. Some additional useful properties are given below. These are either immediate consequences of the definition or implied by the four fundamental properties above. {| style="margin-left:1.6em" |- | style="width:250px" |<math>\bigl| \left|a\right| \bigr| = |a|</math> |[[Idempotence]] (the absolute value of the absolute value is the absolute value) |- | style="width:250px" |<math>\left|-a\right| = |a|</math> |[[even function|Evenness]] ([[reflection symmetry]] of the graph) |- |<math>|a - b| = 0 \iff a = b </math> |[[Identity of indiscernibles]] (equivalent to positive-definiteness) |- |<math>|a - b| \le |a - c| + |c - b| </math> |[[Triangle inequality#Example norms|Triangle inequality]] (equivalent to subadditivity) |- |<math>\left|\frac{a}{b}\right| = \frac{|a|}{|b|}\ </math> (if <math>b \ne 0</math>) |Preservation of division (equivalent to multiplicativity) |- |<math>|a-b| \geq \bigl| \left|a\right| - \left|b\right| \bigr| </math> |[[Reverse triangle inequality]] (equivalent to subadditivity) |} Two other useful properties concerning inequalities are: {| style="margin-left:1.6em" |- |<math>|a| \le b \iff -b \le a \le b </math> |- |<math>|a| \ge b \iff a \le -b\ </math> or <math>a \ge b </math> |} These relations may be used to solve inequalities involving absolute values. For example: {| style="margin-left:1.6em" |- |<math>|x-3| \le 9 </math> |<math>\iff -9 \le x-3 \le 9 </math> |- | |<math>\iff -6 \le x \le 12 </math> |} The absolute value, as "distance from zero", is used to define the absolute difference between arbitrary real numbers, the standard [[Metric (mathematics)|metric]] on the real numbers. ===Complex numbers=== {{Anchor|complex modulus}}[[Image:Complex conjugate picture.svg|right|thumb|The absolute value of a {{nowrap|[[complex number]] <math>z</math>}} is the {{nowrap|distance <math>r</math>}} {{nowrap|of <math>z</math>}} from the origin. It is also seen in the picture that <math>z</math> and its {{nowrap|[[complex conjugate]] <math>\bar z</math>}} have the same absolute value.]] Since the [[complex number]]s are not [[Totally ordered set|ordered]], the definition given at the top for the real absolute value cannot be directly applied to complex numbers. However, the geometric interpretation of the absolute value of a real number as its distance from 0 can be generalised. The absolute value of a complex number is defined by the Euclidean distance of its corresponding point in the [[complex plane]] from the [[origin (mathematics)|origin]]. This can be computed using the [[Pythagorean theorem]]: for any complex number <math display=block>z = x + iy,</math> where <math>x</math> and <math>y</math> are real numbers, the '''absolute value''' or '''modulus''' {{nowrap|of <math>z</math>}} is {{nowrap|denoted <math>|z|</math>}} and is defined by<ref>{{cite book|author=González, Mario O.|title=Classical Complex Analysis|publisher=CRC Press|year=1992|isbn=9780824784157|page=19|url=https://books.google.com/books?id=ncxL7EFr7GsC&pg=PA19}}</ref> <math display=block>|z| = \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}=\sqrt{x^2 + y^2},</math> the [[Pythagorean addition]] of <math>x</math> and <math>y</math>, where <math>\operatorname{Re}(z)=x</math> and <math>\operatorname{Im}(z)=y</math> denote the real and imaginary parts {{nowrap|of <math>z</math>,}} respectively. When the {{nowrap|imaginary part <math>y</math>}} is zero, this coincides with the definition of the absolute value of the {{nowrap|real number <math>x</math>.}} When a complex number <math>z</math> is expressed in its [[Complex number#Polar form|polar form]] {{nowrap|as <math>z = r e^{i \theta},</math>}} its absolute value {{nowrap|is <math>|z| = r.</math>}} Since the product of any complex number <math>z</math> and its {{nowrap|[[complex conjugate]] <math>\bar z = x - iy</math>,}} with the same absolute value, is always the non-negative real number {{nowrap|<math>\left(x^2 + y^2\right)</math>,}} the absolute value of a complex number <math>z</math> is the square root {{nowrap|of <math>z \cdot \overline{z},</math>}} which is therefore called the [[absolute square]] or ''squared modulus'' {{nowrap|of <math>z</math>:}} <math display=block>|z| = \sqrt{z \cdot \overline{z}}.</math> This generalizes the alternative definition for reals: {{nowrap|<math display="inline">|x| = \sqrt{x\cdot x}</math>.}} The complex absolute value shares the four fundamental properties given above for the real absolute value. The identity <math>|z|^2 = |z^2|</math> is a special case of multiplicativity that is often useful by itself.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)