Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ackermann function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== === Definition: as m-ary function === Ackermann's original three-argument function <math>\varphi(m, n, p)</math> is defined [[recursion|recursively]] as follows for nonnegative integers <math>m,n,</math> and <math>p</math>: <math display="block">\begin{align} \varphi(m, n, 0) &= m + n \\ \varphi(m, 0, 1) &= 0 \\ \varphi(m, 0, 2) &= 1 \\ \varphi(m, 0, p) &= m && \text{for } p > 2 \\ \varphi(m, n, p) &= \varphi(m, \varphi(m, n-1, p), p - 1) && \text{for } n, p > 0 \end{align}</math> Of the various two-argument versions, the one developed by Péter and Robinson (called "the" Ackermann function by most authors) is defined for nonnegative integers <math>m</math> and <math>n</math> as follows: <math display="block"> \begin{array}{lcl} \operatorname{A}(0, n) & = & n + 1 \\ \operatorname{A}(m+1, 0) & = & \operatorname{A}(m, 1) \\ \operatorname{A}(m+1, n+1) & = & \operatorname{A}(m, \operatorname{A}(m+1, n)) \end{array} </math> The Ackermann function has also been expressed in relation to the [[Hyperoperation|hyperoperation sequence]]:{{sfn|Sundblad|1971}}{{sfn|Porto|Matos|1980}} <math display="block">A(m,n) = \begin{cases} n+1 & m=0 \\ 2[m](n+3)-3 & m>0 \\ \end{cases}</math> or, written in [[Knuth's up-arrow notation]] (extended to integer indices <math>\geq -2</math>): <math display="block">A(m,n) = \begin{cases} n+1 & m=0 \\ 2\uparrow^{m-2} (n+3) - 3 & m>0 \\ \end{cases}</math> or, equivalently, in terms of Buck's function F:{{sfn|Buck|1963}} <math display="block">A(m,n) = \begin{cases} n+1 & m=0 \\ F(m,n+3) - 3 & m>0 \\ \end{cases}</math> === Definition: as iterated 1-ary function === Define <math>f^{n}</math> as the ''n''-th iterate of <math>f</math>: <math display="block">\begin{array}{rll} f^{0}(x) & = & x \\ f^{n+1}(x) & = & f(f^{n}(x)) \end{array}</math> [[Iterated function|Iteration]] is the process of composing a function with itself a certain number of times. [[Function composition]] is an [[associative]] operation, so <math>f(f^{n}(x)) = f^{n}(f(x))</math>. Conceiving the Ackermann function as a sequence of unary functions, one can set <math>\operatorname{A}_{m}(n) = \operatorname{A}(m,n)</math>. The function then becomes a sequence <math>\operatorname{A}_0, \operatorname{A}_1, \operatorname{A}_2, ...</math> of unary<ref group="n" name="letop4">'[[Currying|curried]]'</ref> functions, defined from [[Iterated function|iteration]]: <math display="block"> \begin{array}{lcl} \operatorname{A}_{0}(n) & = & n+1 \\ \operatorname{A}_{m+1}(n) & = & \operatorname{A}_{m}^{n+1}(1) \\ \end{array} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)