Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Active laser medium
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Cross-sections=== The simple medium can be characterized with [[cross section (physics)|effective cross-sections]] of [[Absorption (electromagnetic radiation)|absorption]] and [[Emission (electromagnetic radiation)|emission]] at frequencies <math>~\omega_{\rm p}~</math> and <math>~\omega_{\rm s}</math>. * Have <math>~N~</math> be concentration of active centers in the solid-state lasers. * Have <math>~N_1~</math> be concentration of active centers in the ground state. * Have <math>~N_2~</math> be concentration of excited centers. * Have <math>~N_1+N_2=N</math>. The relative concentrations can be defined as <math>~n_1=N_1/N~</math> and <math>~n_2=N_2/N</math>. The rate of transitions of an active center from the ground state to the excited state can be expressed like this: <math>~ W_{\rm u}=\frac{I_{\rm p}\sigma_{\rm ap}}{ \hbar \omega_{\rm p} }+\frac{I_{\rm s}\sigma_{\rm as}}{ \hbar \omega_{\rm s} } ~</math>. While the rate of transitions back to the ground state can be expressed like: <math>~W_{\rm d}=\frac{ I_{\rm p} \sigma_{\rm ep}}{ \hbar \omega_{\rm p} }+\frac{I_{\rm s}\sigma_{\rm es}}{ \hbar \omega_{\rm s} } +\frac{1}{\tau}~</math>, where <math>~\sigma_{\rm as} ~</math> and <math>~\sigma_{\rm ap} ~</math> are [[Absorption cross section|effective cross-sections]] of absorption at the frequencies of the signal and the pump, <math>~\sigma_{\rm es} ~</math> and <math>~\sigma_{\rm ep} ~</math> are the same for stimulated emission, and <math>~\frac{1}{\tau}~</math> is rate of the spontaneous decay of the upper level. Then, the kinetic equation for relative populations can be written as follows: <math>~ \frac {{\rm d}n_2} {{\rm d}t} = W_{\rm u} n_1 - W_{\rm d} n_2 </math>, <math>~ \frac{{\rm d}n_1}{{\rm d}t}=-W_{\rm u} n_1 + W_{\rm d} n_2 ~</math> However, these equations keep <math>~ n_1+n_2=1 ~</math>. The absorption <math>~ A ~</math> at the pump frequency and the gain <math>~ G ~</math> at the signal frequency can be written as follows: <math>~ A = N_1\sigma_{\rm pa} -N_2\sigma_{\rm pe} ~</math> and <math>~ G = N_2\sigma_{\rm se} -N_1\sigma_{\rm sa} ~</math>. ===Steady-state solution=== In many cases the gain medium works in a continuous-wave or [[quasi-continuous function|quasi-continuous]] regime, causing the time [[derivative]]s of populations to be negligible. The steady-state solution can be written: <math>~ n_2=\frac{W_{\rm u}}{W_{\rm u}+W_{\rm d}} ~</math>, <math>~ n_1=\frac{W_{\rm d}}{W_{\rm u}+W_{\rm d}}.</math> The dynamic saturation intensities can be defined: <math>~ I_{\rm po}=\frac{\hbar \omega_{\rm p}}{(\sigma_{\rm ap}+\sigma_{\rm ep})\tau} ~</math>, <math>~ I_{\rm so}=\frac{\hbar \omega_{\rm s}}{(\sigma_{\rm as}+\sigma_{\rm es})\tau} ~</math>. The absorption at strong signal: <math>~ A_0=\frac{ND}{\sigma_{\rm as}+\sigma_{\rm es}}~</math>. The gain at strong pump: <math>~ G_0=\frac{ND}{\sigma_{\rm ap}+\sigma_{\rm ep}}~</math>, where <math>~ D= \sigma_{\rm pa} \sigma_{\rm se} - \sigma_{\rm pe} \sigma_{\rm sa} ~</math> is determinant of cross-section. Gain never exceeds value <math>~G_0~</math>, and absorption never exceeds value <math>~A_0 U~</math>. At given intensities <math>~I_{\rm p}~</math>, <math>~I_{\rm s}~</math> of pump and signal, the gain and absorption can be expressed as follows: <math>~A=A_0\frac{U+s}{1+p+s}~</math>, <math>~G=G_0\frac{p-V}{1+p+s}~</math>, where <math>~p=I_{\rm p}/I_{\rm po}~</math>, <math>~s=I_{\rm s}/I_{\rm so}~</math>, <math>~U=\frac{(\sigma_{\rm as}+\sigma_{\rm es})\sigma_{\rm ap}}{D}~</math>, <math>~V=\frac{(\sigma_{\rm ap}+\sigma_{\rm ep})\sigma_{\rm as}}{D}~</math> .
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)