Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Additive function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == Examples of arithmetic functions which are completely additive are: * The restriction of the [[Logarithm|logarithmic function]] to <math>\N.</math> * The '''multiplicity''' of a [[Prime number|prime]] factor ''p'' in ''n'', that is the largest exponent ''m'' for which ''p<sup>m</sup>'' [[Divisor|divides]] ''n''. * {{anchor|Integer logarithm}} ''a''<sub>0</sub>(''n'') – the sum of primes dividing ''n'' counting multiplicity, sometimes called sopfr(''n''), the potency of ''n'' or the '''integer logarithm''' of ''n'' {{OEIS|A001414}}. For example: ::''a''<sub>0</sub>(4) = 2 + 2 = 4 ::''a''<sub>0</sub>(20) = ''a''<sub>0</sub>(2<sup>2</sup> · 5) = 2 + 2 + 5 = 9 ::''a''<sub>0</sub>(27) = 3 + 3 + 3 = 9 ::''a''<sub>0</sub>(144) = ''a''<sub>0</sub>(2<sup>4</sup> · 3<sup>2</sup>) = ''a''<sub>0</sub>(2<sup>4</sup>) + ''a''<sub>0</sub>(3<sup>2</sup>) = 8 + 6 = 14 ::''a''<sub>0</sub>(2000) = ''a''<sub>0</sub>(2<sup>4</sup> · 5<sup>3</sup>) = ''a''<sub>0</sub>(2<sup>4</sup>) + ''a''<sub>0</sub>(5<sup>3</sup>) = 8 + 15 = 23 ::''a''<sub>0</sub>(2003) = 2003 ::''a''<sub>0</sub>(54,032,858,972,279) = 1240658 ::''a''<sub>0</sub>(54,032,858,972,302) = 1780417 ::''a''<sub>0</sub>(20,802,650,704,327,415) = 1240681 * The function Ω(''n''), defined as the total number of [[Prime factor#Omega functions|prime factors]] of ''n'', counting multiple factors multiple times, sometimes called the "Big Omega function" {{OEIS|A001222}}. For example; ::Ω(1) = 0, since 1 has no prime factors ::Ω(4) = 2 ::Ω(16) = Ω(2·2·2·2) = 4 ::Ω(20) = Ω(2·2·5) = 3 ::Ω(27) = Ω(3·3·3) = 3 ::Ω(144) = Ω(2<sup>4</sup> · 3<sup>2</sup>) = Ω(2<sup>4</sup>) + Ω(3<sup>2</sup>) = 4 + 2 = 6 ::Ω(2000) = Ω(2<sup>4</sup> · 5<sup>3</sup>) = Ω(2<sup>4</sup>) + Ω(5<sup>3</sup>) = 4 + 3 = 7 ::Ω(2001) = 3 ::Ω(2002) = 4 ::Ω(2003) = 1 ::Ω(54,032,858,972,279) = Ω(11 ⋅ 1993<sup>2</sup> ⋅ 1236661) = 4 ::Ω(54,032,858,972,302) = Ω(2 ⋅ 7<sup>2</sup> ⋅ 149 ⋅ 2081 ⋅ 1778171) = 6 ::Ω(20,802,650,704,327,415) = Ω(5 ⋅ 7 ⋅ 11<sup>2</sup> ⋅ 1993<sup>2</sup> ⋅ 1236661) = 7. Examples of arithmetic functions which are additive but not completely additive are: * ω(''n''), defined as the total number of distinct [[Prime factor#Omega functions|prime factors]] of ''n'' {{OEIS|A001221}}. For example: ::ω(4) = 1 ::ω(16) = ω(2<sup>4</sup>) = 1 ::ω(20) = ω(2<sup>2</sup> · 5) = 2 ::ω(27) = ω(3<sup>3</sup>) = 1 ::ω(144) = ω(2<sup>4</sup> · 3<sup>2</sup>) = ω(2<sup>4</sup>) + ω(3<sup>2</sup>) = 1 + 1 = 2 ::ω(2000) = ω(2<sup>4</sup> · 5<sup>3</sup>) = ω(2<sup>4</sup>) + ω(5<sup>3</sup>) = 1 + 1 = 2 ::ω(2001) = 3 ::ω(2002) = 4 ::ω(2003) = 1 ::ω(54,032,858,972,279) = 3 ::ω(54,032,858,972,302) = 5 ::ω(20,802,650,704,327,415) = 5 * ''a''<sub>1</sub>(''n'') – the sum of the distinct primes dividing ''n'', sometimes called sopf(''n'') {{OEIS|A008472}}. For example: ::''a''<sub>1</sub>(1) = 0 ::''a''<sub>1</sub>(4) = 2 ::''a''<sub>1</sub>(20) = 2 + 5 = 7 ::''a''<sub>1</sub>(27) = 3 ::''a''<sub>1</sub>(144) = ''a''<sub>1</sub>(2<sup>4</sup> · 3<sup>2</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(3<sup>2</sup>) = 2 + 3 = 5 ::''a''<sub>1</sub>(2000) = ''a''<sub>1</sub>(2<sup>4</sup> · 5<sup>3</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(5<sup>3</sup>) = 2 + 5 = 7 ::''a''<sub>1</sub>(2001) = 55 ::''a''<sub>1</sub>(2002) = 33 ::''a''<sub>1</sub>(2003) = 2003 ::''a''<sub>1</sub>(54,032,858,972,279) = 1238665 ::''a''<sub>1</sub>(54,032,858,972,302) = 1780410 ::''a''<sub>1</sub>(20,802,650,704,327,415) = 1238677
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)