Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Algebra of random variables
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Expectation algebra for random variables == The expected value <math>\operatorname{E}[Z]</math> of the random variable <math>Z</math> resulting from an algebraic operation between two random variables can be calculated using the following set of rules: * [[Addition]]: <math>\operatorname{E}[Z] = \operatorname{E}[X+Y] = \operatorname{E}[X] + \operatorname{E}[Y] = \operatorname{E}[Y] + \operatorname{E}[X]</math> * [[Subtraction]]: <math>\operatorname{E}[Z] = \operatorname{E}[X-Y] = \operatorname{E}[X] - \operatorname{E}[Y] = -\operatorname{E}[Y] + \operatorname{E}[X]</math> * [[Multiplication]]: <math>\operatorname{E}[Z] = \operatorname{E}[X Y] = \operatorname{E}[YX]</math>. Particularly, if <math>X</math> and <math>Y</math> are [[Independence (probability theory)|independent]] from each other, then: <math>\operatorname{E}[X Y] = \operatorname{E}[X] \cdot \operatorname{E}[Y] = \operatorname{E}[Y] \cdot \operatorname{E}[X]</math>. * [[Division (mathematics)|Division]]: <math>\operatorname{E}[Z] = \operatorname{E}[X/Y] = \operatorname{E}[X \cdot (1/Y)] = \operatorname{E}[(1/Y) \cdot X]</math>. Particularly, if <math>X</math> and <math>Y</math> are independent from each other, then: <math>\operatorname{E}[X/Y] = \operatorname{E}[X] \cdot \operatorname{E}[1/Y] = \operatorname{E}[1/Y] \cdot \operatorname{E}[X]</math>. * [[Exponentiation]]: <math>\operatorname{E}[Z] = \operatorname{E}[X^Y] = \operatorname{E}[e^{Y\ln(X)}]</math> If any of the random variables is replaced by a deterministic variable or by a constant value (<math>k</math>), the previous properties remain valid considering that <math>\Pr(X = k) = 1</math> and, therefore, <math>\operatorname{E}[X] = k</math>. If <math>Z</math> is defined as a general non-linear algebraic function <math>f</math> of a random variable <math>X</math>, then: <math display="block">\operatorname{E}[Z] = \operatorname{E}[f(X)] \neq f(\operatorname{E}[X])</math> Some examples of this property include: * <math>\operatorname{E}[X^2] \neq \operatorname{E}[X]^2</math> * <math>\operatorname{E}[1/X] \neq 1/\operatorname{E}[X]</math> * <math>\operatorname{E}[e^X] \neq e^{\operatorname{E}[X]}</math> * <math>\operatorname{E}[\ln(X)] \neq \ln(\operatorname{E}[X])</math> The exact value of the expectation of the non-linear function will depend on the particular probability distribution of the random variable <math>X</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)