Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Algebraic integer
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== * The only algebraic integers that are found in the set of rational numbers are the integers. In other words, the intersection of <math>\mathbb{Q}</math> and {{mvar|A}} is exactly <math>\mathbb{Z}</math>. The rational number {{math|{{sfrac|''a''|''b''}}}} is not an algebraic integer unless {{mvar|b}} [[divisor|divides]] {{mvar|a}}. The leading coefficient of the polynomial {{math|''bx'' β ''a''}} is the integer {{mvar|b}}. * The [[square root]] <math>\sqrt{n}</math> of a nonnegative integer {{mvar|n}} is an algebraic integer, but is [[irrational number|irrational]] unless {{mvar|n}} is a [[square number|perfect square]]. *If {{mvar|d}} is a [[square-free integer]] then the [[field extension|extension]] <math>K = \mathbb{Q}(\sqrt{d}\,)</math> is a [[quadratic field extension|quadratic field]] of rational numbers. The ring of algebraic integers {{math|{{mathcal|O}}<sub>''K''</sub>}} contains <math>\sqrt{d}</math> since this is a root of the monic polynomial {{math|''x''<sup>2</sup> β ''d''}}. Moreover, if {{math|''d'' β‘ 1 [[modular arithmetic|mod]] 4}}, then the element <math display=inline>\frac{1}{2}(1 + \sqrt{d}\,)</math> is also an algebraic integer. It satisfies the polynomial {{math|''x''<sup>2</sup> β ''x'' + {{sfrac|1|4}}(1 β ''d'')}} where the [[constant term]] {{math|{{sfrac|1|4}}(1 β ''d'')}} is an integer. The full ring of integers is generated by <math>\sqrt{d}</math> or <math display=inline>\frac{1}{2}(1 + \sqrt{d}\,)</math> respectively. See [[Quadratic integer]] for more. *The ring of integers of the field <math>F = \Q[\alpha]</math>, {{math|1=''Ξ±'' = {{radic|''m''|3}}}}, has the following [[integral basis]], writing {{math|1=''m'' = ''hk''<sup>2</sup>}} for two [[square-free integer|square-free]] [[coprime]] integers {{mvar|h}} and {{mvar|k}}:<ref>{{cite book| last1=Marcus | first1=Daniel A. | title=Number Fields |edition=3rd | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-0-387-90279-1 | year=1977 |at=ch. 2, p. 38 and ex. 41}}</ref> <math display="block">\begin{cases} 1, \alpha, \dfrac{\alpha^2 \pm k^2 \alpha + k^2}{3k} & m \equiv \pm 1 \bmod 9 \\ 1, \alpha, \dfrac{\alpha^2}k & \text{otherwise} \end{cases}</math> * If {{mvar|ΞΆ<sub>n</sub>}} is a [[primitive root of unity|primitive]] {{mvar|n}}th [[root of unity]], then the ring of integers of the [[cyclotomic field]] <math>\Q(\zeta_n)</math> is precisely <math>\Z[\zeta_n]</math>. * If {{mvar|Ξ±}} is an algebraic integer then {{math|1=''Ξ²'' = {{radic|''Ξ±''|''n''}}}} is another algebraic integer. A polynomial for {{mvar|Ξ²}} is obtained by substituting {{math|''x<sup>n</sup>''}} in the polynomial for {{mvar|Ξ±}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)