Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Algebraic normal form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Performing operations within algebraic normal form == There are straightforward ways to perform the standard Boolean operations on ANF inputs in order to get ANF results. XOR (logical exclusive disjunction) is performed directly: : ({{fontcolor|red|1 β x}}) β ({{fontcolor|green|1 β x β y}}) : {{fontcolor|red|1 β x}} β {{fontcolor|green|1 β x β y}} : 1 β 1 β x β x β y : y NOT (logical negation) is XORing 1:<ref name="not-equiv">[http://www.wolframalpha.com/input/?i=simplify+1+xor+a WolframAlpha NOT-equivalence demonstration: Β¬a = 1 β a]</ref> : {{fontcolor|red|Β¬}}{{fontcolor|green|(1 β x β y)}} : {{fontcolor|red|1 β }}{{fontcolor|green|(1 β x β y)}} : 1 β 1 β x β y : x β y AND (logical conjunction) is [[distributive property|distributed algebraically]]<ref name="and-equiv">[http://www.wolframalpha.com/input/?i=%28a+xor+b%29+and+%28c+xor+d%29+in+anf WolframAlpha AND-equivalence demonstration: (a β b)(c β d) = ac β ad β bc β bd]</ref> : ({{fontcolor|red|1}} β {{fontcolor|red|x}}){{fontcolor|green|(1 β x β y)}} : {{fontcolor|red|1}}{{fontcolor|green|(1 β x β y)}} β {{fontcolor|red|x}}{{fontcolor|green|(1 β x β y)}} : (1 β x β y) β (x β x β xy) : 1 β x β x β x β y β xy : 1 β x β y β xy OR (logical disjunction) uses either 1 β (1 β a)(1 β b)<ref name="or-demorgans">From [[De Morgan's laws]]</ref> (easier when both operands have purely true terms) or a β b β ab<ref name="or-equiv">[http://www.wolframalpha.com/input/?i=simplify+a+xor+b+xor+%28a+and+b%29 WolframAlpha OR-equivalence demonstration: a + b = a β b β ab]</ref> (easier otherwise): : ({{fontcolor|red|1 β x}}) + ({{fontcolor|green|1 β x β y}}) : 1 β (1 β {{fontcolor|red|1 β x}})(1 β {{fontcolor|green|1 β x β y}}) : 1 β x(x β y) : 1 β x β xy
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)