Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Analytic geometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Ancient Greece=== The [[Ancient Greece|Greek]] mathematician [[Menaechmus]] solved problems and proved theorems by using a method that had a strong resemblance to the use of coordinates and it has sometimes been maintained that he had introduced analytic geometry.<ref>{{cite book |first=Carl B. |last=Boyer |author-link=Carl Benjamin Boyer |title=A History of Mathematics |edition=Second |publisher=John Wiley & Sons, Inc. |year=1991 |isbn=0-471-54397-7 |chapter=The Age of Plato and Aristotle |pages=[https://archive.org/details/historyofmathema00boye/page/94 94β95] |quote=Menaechmus apparently derived these properties of the conic sections and others as well. Since this material has a strong resemblance to the use of coordinates, as illustrated above, it has sometimes been maintained that Menaechmus had analytic geometry. Such a judgment is warranted only in part, for certainly Menaechmus was unaware that any equation in two unknown quantities determines a curve. In fact, the general concept of an equation in unknown quantities was alien to Greek thought. It was shortcomings in algebraic notations that, more than anything else, operated against the Greek achievement of a full-fledged coordinate geometry. |chapter-url=https://archive.org/details/historyofmathema00boye/page/94 }}</ref> [[Apollonius of Perga]], in ''[[Apollonius of Perga#De Sectione Determinata|On Determinate Section]]'', dealt with problems in a manner that may be called an analytic geometry of one dimension; with the question of finding points on a line that were in a ratio to the others.<ref>{{cite book |first=Carl B. |last=Boyer |author-link=Carl Benjamin Boyer |title=A History of Mathematics |edition=Second |publisher=John Wiley & Sons, Inc. |year=1991 |isbn=0-471-54397-7 |chapter=Apollonius of Perga |pages=[https://archive.org/details/historyofmathema00boye/page/142 142] |quote=The Apollonian treatise ''On Determinate Section'' dealt with what might be called an analytic geometry of one dimension. It considered the following general problem, using the typical Greek algebraic analysis in geometric form: Given four points A, B, C, D on a straight line, determine a fifth point P on it such that the rectangle on AP and CP is in a given ratio to the rectangle on BP and DP. Here, too, the problem reduces easily to the solution of a quadratic; and, as in other cases, Apollonius treated the question exhaustively, including the limits of possibility and the number of solutions. |chapter-url=https://archive.org/details/historyofmathema00boye/page/142 }}</ref> Apollonius in the ''Conics'' further developed a method that is so similar to analytic geometry that his work is sometimes thought to have anticipated the work of [[Descartes]] by some 1800 years. His application of reference lines, a diameter and a tangent is essentially no different from our modern use of a coordinate frame, where the distances measured along the diameter from the point of tangency are the abscissas, and the segments parallel to the tangent and intercepted between the axis and the curve are the ordinates. He further developed relations between the abscissas and the corresponding ordinates that are equivalent to rhetorical equations (expressed in words) of curves. However, although Apollonius came close to developing analytic geometry, he did not manage to do so since he did not take into account negative magnitudes and in every case the coordinate system was superimposed upon a given curve ''a posteriori'' instead of ''a priori''. That is, equations were determined by curves, but curves were not determined by equations. Coordinates, variables, and equations were subsidiary notions applied to a specific geometric situation.<ref>{{cite book |first=Carl B. |last=Boyer |author-link=Carl Benjamin Boyer |title=A History of Mathematics |edition=Second |publisher=John Wiley & Sons, Inc. |year=1991 |isbn=0-471-54397-7 |chapter=Apollonius of Perga |pages=[https://archive.org/details/historyofmathema00boye/page/156 156] |quote=The method of Apollonius in the ''Conics'' in many respects are so similar to the modern approach that his work sometimes is judged to be an analytic geometry anticipating that of Descartes by 1800 years. The application of references lines in general, and of a diameter and a tangent at its extremity in particular, is, of course, not essentially different from the use of a coordinate frame, whether rectangular or, more generally, oblique. Distances measured along the diameter from the point of tangency are the abscissas, and segments parallel to the tangent and intercepted between the axis and the curve are the ordinates. The Apollonian relationship between these abscissas and the corresponding ordinates are nothing more nor less than rhetorical forms of the equations of the curves. However, Greek geometric algebra did not provide for negative magnitudes; moreover, the coordinate system was in every case superimposed ''a posteriori'' upon a given curve in order to study its properties. There appear to be no cases in ancient geometry in which a coordinate frame of reference was laid down ''a priori'' for purposes of graphical representation of an equation or relationship, whether symbolically or rhetorically expressed. Of Greek geometry we may say that equations are determined by curves, but not that curves are determined by equations. Coordinates, variables, and equations were subsidiary notions derived from a specific geometric situation; [...] That Apollonius, the greatest geometer of antiquity, failed to develop analytic geometry, was probably the result of a poverty of curves rather than of thought. General methods are not necessary when problems concern always one of a limited number of particular cases. |chapter-url=https://archive.org/details/historyofmathema00boye/page/156 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)