Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Arithmetic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Notation == In this article, <math display="inline">\sum_p f(p)</math> and <math display="inline">\prod_p f(p)</math> mean that the sum or product is over all [[prime number]]s: <math display="block">\sum_p f(p) = f(2) + f(3) + f(5) + \cdots</math> and <math display="block">\prod_p f(p)= f(2)f(3)f(5)\cdots.</math> Similarly, <math display="inline">\sum_{p^k} f(p^k)</math> and <math display="inline">\prod_{p^k} f(p^k)</math> mean that the sum or product is over all [[prime power]]s with strictly positive exponent (so {{math|1=''k'' = 0}} is not included): <math display="block">\sum_{p^k} f(p^k) = \sum_p\sum_{k > 0} f(p^k) = f(2) + f(3) + f(4) +f(5) +f(7)+f(8)+f(9)+\cdots.</math> The notations <math display="inline">\sum_{d\mid n} f(d)</math> and <math display="inline">\prod_{d\mid n} f(d)</math> mean that the sum or product is over all positive divisors of ''n'', including 1 and ''n''. For example, if {{math|1=''n'' = 12}}, then <math display="block">\prod_{d\mid 12} f(d) = f(1)f(2) f(3) f(4) f(6) f(12). </math> The notations can be combined: <math display="inline">\sum_{p\mid n} f(p)</math> and <math display="inline">\prod_{p\mid n} f(p)</math> mean that the sum or product is over all prime divisors of ''n''. For example, if ''n'' = 18, then <math display="block">\sum_{p\mid 18} f(p) = f(2) + f(3), </math> and similarly <math display="inline">\sum_{p^k\mid n} f(p^k)</math> and <math display="inline">\prod_{p^k\mid n} f(p^k)</math> mean that the sum or product is over all prime powers dividing ''n''. For example, if ''n'' = 24, then <math display="block">\prod_{p^k\mid 24} f(p^k) = f(2) f(3) f(4) f(8). </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)