Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Asymptotic expansion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== [[File:AsymptoticExpansionExample.svg|thumb|Plots of the absolute value of the fractional error in the asymptotic expansion of the Gamma function (left). The horizontal axis is the number of terms in the asymptotic expansion. Blue points are for {{nowrap|1=''x'' = 2}} and red points are for {{nowrap|1=''x'' = 3}}. It can be seen that the least error is encountered when there are 14 terms for {{nowrap|1=''x'' = 2}}, and 20 terms for {{nowrap|1=''x'' = 3}}, beyond which the error diverges.]] * [[Gamma function]] ([[Stirling's approximation]]) <math display="block"> \frac{e^x}{x^x\sqrt{2\pi x}} \Gamma(x+1) \sim 1+\frac{1}{12x}+\frac{1}{288x^2}-\frac{139}{51840x^3}-\cdots\ (x \to \infty)</math> * [[Exponential integral]] <math display="block">x e^x E_1(x) \sim \sum_{n=0}^\infty \frac{(-1)^nn!}{x^n} \ (x \to \infty) </math> * [[Logarithmic integral]] <math display="block">\operatorname{li}(x) \sim \frac{x}{\ln x} \sum_{k=0}^{\infty} \frac{k!}{(\ln x)^k}</math> * [[Riemann zeta function]] <math display="block">\zeta(s) \sim \sum_{n=1}^{N}n^{-s} + \frac{N^{1-s}}{s-1} - \frac{N^{-s}}{2} + N^{-s} \sum_{m=1}^\infty \frac{B_{2m} s^{\overline{2m-1}}}{(2m)! N^{2m-1}}</math>where <math>B_{2m}</math> are [[Bernoulli numbers]] and <math>s^{\overline{2m-1}}</math> is a [[rising factorial]]. This expansion is valid for all complex ''s'' and is often used to compute the zeta function by using a large enough value of ''N'', for instance <math>N > |s|</math>. * [[Error function]]<math display="block"> \sqrt{\pi}x e^{x^2}{\rm erfc}(x) \sim 1+\sum_{n=1}^\infty (-1)^n \frac{(2n-1)!!}{(2x^2)^n} \ (x \to \infty)</math> where {{math|(2''n'' β 1)!!}} is the [[double factorial]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)