Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Banach fixed-point theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proof== Let <math>x_0 \in X</math> be arbitrary and define a [[sequence]] <math>(x_n)_{n\in\mathbb N}</math> by setting <math>x_n = T(x_{n-1})</math>. We first note that for all <math>n \in \N,</math> we have the inequality :<math>d(x_{n+1}, x_n) \le q^n d(x_1, x_0).</math> This follows by [[Principle of mathematical induction|induction]] on <math>n</math>, using the fact that <math>T</math> is a contraction mapping. Then we can show that <math>(x_n)_{n\in\mathbb N}</math> is a [[Cauchy sequence]]. In particular, let <math>m, n \in \N</math> such that <math>m > n </math>: : <math>\begin{align} d(x_m, x_n) & \leq d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \cdots + d(x_{n+1}, x_n) \\[5pt] & \leq q^{m-1}d(x_1, x_0) + q^{m-2}d(x_1, x_0) + \cdots + q^nd(x_1, x_0) \\[5pt] & = q^n d(x_1, x_0) \sum_{k=0}^{m-n-1} q^k \\[5pt] & \leq q^n d(x_1, x_0) \sum_{k=0}^\infty q^k \\[5pt] & = q^n d(x_1, x_0) \left ( \frac{1}{1-q} \right ). \end{align}</math> Let <math>\varepsilon > 0</math> be arbitrary. Since <math>q \in [0,1)</math>, we can find a large <math>N \in \N</math> so that :<math>q^N < \frac{\varepsilon(1-q)}{d(x_1, x_0)}.</math> Therefore, by choosing <math>m</math> and <math>n</math> greater than <math>N</math> we may write: :<math>d(x_m, x_n) \leq q^n d(x_1, x_0) \left ( \frac{1}{1-q} \right ) < \left (\frac{\varepsilon(1-q)}{d(x_1, x_0)} \right ) d(x_1, x_0) \left ( \frac{1}{1-q} \right ) = \varepsilon.</math> This proves that the sequence <math>(x_n)_{n\in\mathbb N}</math> is Cauchy. By completeness of <math>(X, d)</math>, the sequence has a limit <math>x^* \in X.</math> Furthermore, <math>x^*</math> must be a [[Fixed point (mathematics)|fixed point]] of <math>T</math>: :<math>x^*=\lim_{n\to\infty} x_n = \lim_{n\to\infty} T(x_{n-1}) = T\left(\lim_{n\to\infty} x_{n-1} \right) = T(x^*). </math> As a contraction mapping, <math>T</math> is continuous, so bringing the limit inside <math>T</math> was justified. Lastly, <math>T</math> cannot have more than one fixed point in <math>(X, d)</math>, since any pair of distinct fixed points <math>p_1</math> and <math>p_2</math> would contradict the contraction of <math>T</math>: :<math> d(T(p_1),T(p_2)) = d(p_1,p_2) > q d(p_1, p_2).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)