Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bicubic interpolation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Extension to rectilinear grids== Often, applications call for bicubic interpolation using data on a rectilinear grid, rather than the unit square. In this case, the identities for <math>p_x, p_y,</math> and <math>p_{xy}</math> become <math display="block">p_x(x,y) = \textstyle \sum\limits_{i=1}^3 \sum\limits_{j=0}^3 \frac{a_{ij} i x^{i-1} y^j}{\Delta x},</math> <math display="block">p_y(x,y) = \textstyle \sum\limits_{i=0}^3 \sum\limits_{j=1}^3 \frac{a_{ij} x^i j y^{j-1}}{\Delta y},</math> <math display="block">p_{xy}(x,y) = \textstyle \sum\limits_{i=1}^3 \sum\limits_{j=1}^3 \frac{a_{ij} i x^{i-1} j y^{j-1}}{\Delta x \Delta y},</math> where <math>\Delta x</math> is the <math>x</math> spacing of the cell containing the point <math>(x,y)</math> and similar for <math>\Delta y</math>. In this case, the most practical approach to computing the coefficients <math>\alpha</math> is to let <math display="block">x=\left[\begin{smallmatrix}f(0,0)&f(1,0)&f(0,1)&f(1,1)&\Delta x f_x(0,0)&\Delta xf_x(1,0)&\Delta x f_x(0,1)&\Delta x f_x(1,1)&\Delta y f_y(0,0)&\Delta y f_y(1,0)&\Delta y f_y(0,1)&\Delta y f_y(1,1)&\Delta x \Delta y f_{xy}(0,0)&\Delta x \Delta y f_{xy}(1,0)&\Delta x \Delta y f_{xy}(0,1)&\Delta x \Delta y f_{xy}(1,1)\end{smallmatrix}\right]^T,</math> then to solve <math>\alpha=A^{-1}x</math> with <math>A</math> as before. Next, the normalized interpolating variables are computed as <math display="block">\begin{align} \overline{x} &= \frac{x-x_0}{x_1-x_0}, \\ \overline{y} &= \frac{y-y_0}{y_1-y_0} \end{align}</math> where <math>x_0, x_1, y_0,</math> and <math>y_1</math> are the <math>x</math> and <math>y</math> coordinates of the grid points surrounding the point <math>(x,y)</math>. Then, the interpolating surface becomes <math display="block">p(x,y) = \sum\limits_{i=0}^3 \sum_{j=0}^3 a_{ij} {\overline{x}}^i {\overline{y}}^j.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)