Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Birkhoff interpolation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Some examples== Consider a differentiable function <math>f(x)</math> on <math>[a,b]</math>, such that <math>f(a)=f(b)</math>. Let us see that there is no Birkhoff interpolation quadratic polynomial such that <math>P^{(1)}(c)=f^{(1)}(c)</math> where <math>c=\frac{a+b}{2}</math>: Since <math>f(a)=f(b)</math>, one may write the polynomial as <math>P(x)=A(x-c)^2+B</math> (by [[completing the square]]) where <math>A,B</math> are merely the interpolation coefficients. The derivative of the interpolation polynomial is given by <math>P^{(1)}(x)=2A(x-c)^2</math>. This implies <math>P^{(1)}(c)=0</math>, however this is absurd, since <math>f^{(1)}(c)</math> is not necessarily <math>0</math>. The incidence matrix is given by: :<math> \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}_{3\times3} </math> Consider a differentiable function <math>f(x)</math> on <math>[a,b]</math>, and denote <math>x_0=a,x_2=b</math> with <math>x_1\in[a,b]</math>. Let us see that there is indeed Birkhoff interpolation quadratic polynomial such that <math>P(x_1)=f(x_1)</math> and <math>P^{(1)}(x_0)=f^{(1)}(x_0),P^{(1)}(x_2)=f^{(1)}(x_2)</math>. Construct the interpolating polynomial of <math>f^{(1)}(x)</math> at the nodes <math>x_0,x_2</math>, such that <math>\displaystyle P_1(x) = \frac{f^{(1)}(x_2)-f^{(1)}(x_0)}{x_2-x_0}(x-x_0)+f^{(1)}(x_0)</math>. Thus the polynomial : <math>\displaystyle P_2(x) = f(x_1) + \int_{x_1}^x\!P_1(t)\;\mathrm{d}t</math> is the Birkhoff interpolating polynomial. The incidence matrix is given by: :<math> \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}_{3\times3} </math> Given a natural number <math>N</math>, and a differentiable function <math>f(x)</math> on <math>[a,b]</math>, is there a polynomial such that: <math>P(x_0)=f(x_0)</math> and <math>P^{(1)}(x_i)=f^{(1)}(x_i)</math> for <math>i=1,\cdots,N</math> with <math>x_0,x_1,\cdots,x_N\in[a,b]</math>? Construct the Lagrange/[[Newton polynomial]] (same interpolating polynomial, different form to calculate and express them) <math>P_{N-1}(x)</math> that satisfies <math>P_{N-1}(x_i)=f^{(1)}(x_i)</math> for <math>i=1,\cdots,N</math>, then the polynomial <math>\displaystyle P_N(x) = f(x_0) + \int_{x_0}^x\! P_{N-1}(t)\;\mathrm{d}t</math> is the Birkhoff interpolating polynomial satisfying the above conditions. The incidence matrix is given by: :<math> \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ \end{pmatrix}_{N\times N} </math> Given a natural number <math>N</math>, and a <math>2N</math> differentiable function <math>f(x)</math> on <math>[a,b]</math>, is there a polynomial such that: <math>P^{(k)}(a)=f^{(k)}(a)</math> and <math>P^{(k)}(b)=f^{(k)}(b)</math> for <math>k=0,2,\cdots,2N</math>? Construct <math>P_1(x)</math> as the interpolating polynomial of <math>f(x)</math> at <math>x=a</math> and <math>x=b</math>, such that <math>P_1(x)=\frac{f^{(2N)}(b)-f^{(2N)}(a)}{b-a}(x-a) +f^{(2N)}(a)</math>. Define then the iterates <math>\displaystyle P_{k+2}(x)=\frac{f^{(2N-2k)}(b)-f^{(2N-2k)}(a)}{b-a}(x-a) +f^{(2N-2k)}(a) + \int_a^x\!\int_a^t\! P_k(s)\;\mathrm{d}s\;\mathrm{d}t </math> . Then <math>P_{2N+1}(x)</math> is the Birkhoff interpolating polynomial. The incidence matrix is given by: :<math> \begin{pmatrix} 1 & 0 & 1 & 0 \cdots \\ 1 & 0 & 1 & 0 \cdots \\ \end{pmatrix}_{2\times N} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)