Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Borůvka's algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Complexity == Borůvka's algorithm can be shown to take {{math|[[Big O notation|O]](log ''V'')}} iterations of the outer loop until it terminates, and therefore to run in time {{math|[[Big O notation|O]](''E'' log ''V'')}}, where {{mvar|E}} is the number of edges, and {{mvar|V}} is the number of vertices in {{mvar|G}} (assuming {{math|''E'' ≥ ''V''}}). In [[planar graph]]s, and more generally in families of graphs closed under [[graph minor]] operations, it can be made to run in linear time, by removing all but the cheapest edge between each pair of components after each stage of the algorithm.<ref>{{Cite book|last=Eppstein|first=David|author-link=David Eppstein|contribution=Spanning trees and spanners|title=Handbook of Computational Geometry|editor1-first=J.-R.|editor1-last=Sack|editor1-link=Jörg-Rüdiger Sack|editor2-first=J.|editor2-last=Urrutia|editor2-link= Jorge Urrutia Galicia|publisher=Elsevier|year=1999|pages=425–461}}; {{Cite journal|last=Mareš|first=Martin|title=Two linear time algorithms for MST on minor closed graph classes|journal=Archivum Mathematicum|volume=40|year=2004|issue=3|pages=315–320|url=http://www.emis.de/journals/AM/04-3/am1139.pdf}}.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)