Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bound state
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== {{see also|Decomposition of spectrum (functional analysis) #Quantum mechanics}} Let [[Measure space#Important classes of measure spaces|{{math|''σ''}}-finite measure space]] <math>(X, \mathcal A, \mu)</math> be a [[Measure space#Important classes of measure spaces|probability space]] associated with [[Separable space|separable]] [[complex number|complex]] [[Hilbert space]] <math>H</math>. Define a [[Stone's theorem on one-parameter unitary groups|one-parameter group of unitary operators]] <math> (U_t)_{t\in \mathbb{R}} </math>, a [[density operator]] <math>\rho = \rho(t_0) </math> and an [[observable]] <math>T</math> on <math>H</math>. Let <math>\mu(T,\rho)</math> be the induced probability distribution of <math>T</math> with respect to <math>\rho</math>. Then the evolution :<math>\rho(t_0)\mapsto [U_t(\rho)](t_0) = \rho(t_0 +t)</math> is '''bound''' with respect to <math>T</math> if :<math>\lim_{R \rightarrow \infty}{\sup_{t \geq t_0}{\mu(T,\rho(t))(\mathbb{R}_{> R})}} = 0 </math>, where <math>\mathbb{R}_{>R} = \lbrace x \in \mathbb{R} \mid x > R \rbrace </math>.{{dubious|date=November 2016}}<ref>{{cite book | last1=Reed | first1=M. | last2=Simon | first2=B. | title=Methods of Modern Mathematical Physics: I: Functional analysis | publisher=Academic Press | year=1980 |page=303 | isbn=978-0-12-585050-6}}</ref> A quantum particle is in a '''bound state''' if at no point in time it is found βtoo far away" from any finite region <math>R\subset X</math>. Using a [[wave function]] representation, for example, this means<ref>{{cite book | last=Gustafson | first=Stephen J. | last2=Sigal | first2=Israel Michael | title=Mathematical Concepts of Quantum Mechanics | publisher=Springer International Publishing | publication-place=Cham | year=2020 | isbn=978-3-030-59561-6 | issn=0172-5939 | doi=10.1007/978-3-030-59562-3|chapter=Bound and Decaying States}}</ref> :<math>\begin{align} 0 &= \lim_{R\to\infty}{\mathbb{P}(\text{particle measured inside }X\setminus R)} \\ &= \lim_{R\to\infty}{\int_{X\setminus R}|\psi(x)|^2\,d\mu(x)}, \end{align}</math> such that :<math>\int_X{|\psi(x)|^{2}\,d\mu(x)} < \infty.</math> In general, a quantum state is a bound state ''if and only if'' it is finitely [[Probability amplitude#Normalization|normalizable]] for all times <math>t\in\mathbb{R}</math> and remains spatially localized.<ref>{{cite journal | last=Ruelle | first=D. | title=A remark on bound states in potential-scattering theory | journal=Il Nuovo Cimento A | publisher=Springer Science and Business Media LLC | volume=61 | issue=4 | year=1969 | issn=0369-3546 | doi=10.1007/bf02819607 | url=https://www.ihes.fr/%7Eruelle/PUBLICATIONS/%5B25%5D.pdf}}</ref> Furthermore, a bound state lies within the [[Spectrum_(functional_analysis)#Classification_of_points_in_the_spectrum|pure point part]] of the spectrum of <math>T</math> ''if and only if'' it is an [[eigenvector]] of <math>T</math>.<ref>{{cite web | last=Simon | first=B. | title=An Overview of Rigorous Scattering Theory | date=1978 |page=3| url=https://api.semanticscholar.org/CorpusID:16913591}}</ref> More informally, "boundedness" results foremost from the choice of [[domain of definition]] and characteristics of the state rather than the observable.<ref group=nb>See [[Expectation_value_(quantum_mechanics)#Example_in_configuration_space|Expectation value (quantum mechanics)]] for an example.</ref> For a concrete example: let <math>H := L^2(\mathbb{R}) </math> and let <math>T</math> be the [[position operator]]. Given compactly supported <math>\rho = \rho(0) \in H</math> and <math>[-1,1] \subseteq \mathrm{Supp}(\rho)</math>. *If the state evolution of <math>\rho</math> "moves this wave package to the right", e.g., if <math>[t-1,t+1] \in \mathrm{Supp}(\rho(t)) </math> for all <math>t \geq 0</math>, then <math>\rho</math> is not bound state with respect to position. *If <math>\rho</math> does not change in time, i.e., <math>\rho(t) = \rho</math> for all <math>t \geq 0</math>, then <math>\rho</math> is bound with respect to position. *More generally: If the state evolution of <math>\rho</math> "just moves <math>\rho</math> inside a bounded domain", then <math>\rho</math> is bound with respect to position.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)